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Abstract. We propose an efficient estimation technique for the automatic selection of locally-
adaptive Total Variation regularisation parameters based on an hybrid strategy which combines
a local maximum-likelihood approach estimating space-variant image scales with a global
discrepancy principle related to noise statistics. We verify the effectiveness of the proposed
approach solving some exemplar image reconstruction problems and show its outperformance
in comparison to state-of-the-art parameter estimation strategies, the former weighting locally
the fit with the data [4], the latter relying on a bilevel learning paradigm [8, 9].

1. Introduction
In this paper, we are interested in restoring images corrupted by known blur and additive white
Gaussian noise (AWGN), i.e. we assume a degradation model of the form g = Ku + ε, with
g, u, ε ∈ Rn vectorised forms of the discrete observed image, target image and noise realisation,
respectively, and with K ∈ Rn×n the blur operator. Such inverse problem is typically ill-posed.

The variational approach to solve ill-posed image restoration problems consists in minimising
a composite functional which is the sum of a regularisation term encoding a-priori assumptions
on the unknown image u and a data fitting term describing noise statistics. A very popular
edge-preserving regulariser firstly proposed in [15] for image denoising is the Total Variation
(TV) semi-norm, while the so-called L2 data term is known to be suited for AWGN. They read

TV(u) :=
n∑

i=1

‖(Du)i‖p :=
n∑

i=1

((Dhu)pi + (Dvu)pi )
1/p

, p ∈ {1, 2} (TV)

L2(u) :=
1

2

n∑
i=1

(Ku− g)2
i , (L2)

where (Dhu)i, (Dvu)i denote the horizontal and vertical discrete gradient components at pixel i,
respectively. The two instances p=1, 2 in (TV) are referred to as anisotropic and isotropic TV,
respectively. By taking a weighted average of (TV) and (L2), one gets the TV-L2 model:

min
u ∈ Rn

{αTV(u) + L2(u)} or, equivalently, min
u ∈ Rn

{TV(u) + µL2(u)} . (TV-L2)
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Both the parameters α and µ = 1/α are often referred to as regularisation parameters since
their size weights the amount of the regularisation against the trust in the data. Note that the
equivalence of the two formulations in (TV-L2) allows in fact to use indifferently either of the two
models. To estimate an optimal regularisation parameter, several strategies can be used. When
the noise level is known, a classical approach is based on the use of the discrepancy principle [5],
while in blind scenarios, optimisation techniques learning the optimal amount of regularisation
from training data can be used, see, e.g., [2] and the references therein.

In order to overcome the well-known artefacts of TV-based reconstructions, higher-order [1]
and/or locally-adaptive anisotropic regularisers [3, 11, 14] have been proposed in the literature.
A simple, though powerful, extension enforcing the TV smoothing to locally adapt to the
underlying image structures (such as texture, cartoon. . . ) consists in weighting at any pixel
the amount of regularisation [8, 9, 7, 16] or data fit [4]. This reflects in considering two locally-
weighted models, referred to as WTV-L2 and TV-WL2, which represent space-variant extensions
of the two equivalent formulations of the (TV-L2) model and read as

min
u∈Rn

{WTV(u) + L2(u)} , WTV(u):=

n∑
i=1

αi‖(Du)i‖p, αi> 0 ∀ i, p ∈ {1, 2} , (WTV-L2)

min
u∈Rn

{TV(u) + WL2(u)} , WL2(u):=
1

2

n∑
i=1

µi(Ku− g)2
i , µi> 0 ∀ i, (TV-WL2)

where, note, the positive parameters αi and µi are now space-variant and both control locally
the amount of smoothing. The estimation of parameters αi in (WTV-L2) has been done by
inferring local geometries [16] or by means of computationally expensive bilevel-optimisation
approaches [8, 9], whereas parameters µi in (TV-WL2) have been estimated based on the use of
a local discrepancy principle [4]. We remark that despite the aforementioned equivalence of the
two approaches in the (TV-L2) scalar parameter case, the two locally-weighted (WTV-L2) and
(TV-WL2) models do show significant differences when used for image reconstruction problems
as it has been rigorously studied in [7].

Contribution We propose an image restoration approach based on an hybrid version of the
two space-variant (WTV-L2) and (TV-WL2) variational models, with variable regularisation
parameters αi and global fidelity parameter µ referred to as HWTV-L2 model, see (HWTV-L2).
We propose a simple yet effective automatic Maximum-Likelihood (ML) estimation procedure
of the αi weights in the WTV regulariser as well as with the use of a standard discrepancy
principle. The statistical prior assumption motivating our ML estimation approach is that
image gradients norms are locally drawn from an half-Laplacian distribution with space-variant
scale parameters αi. The local closed-form formula obtained by our ML approach is extremely
handy and, together with a minimisation algorithm based on the Alternating Directions Method
of Multipliers (ADMM), renders our proposal very efficient. The proposed approach outperforms
by far both the the classical TV-L2 and the SATV [4] restoration methods in terms of standard
image quality indexes (ISNR, SSIM) and, compared to recent bilevel optimisation strategies
used in [8, 9] to estimate local TV weights, it slightly improves the restoration quality while at
the same time being much more efficient.

2. The proposed hybrid space-variant model
For a given image g ∈ Rn corrupted by AWGN and blur generated by a known blur operator
K ∈ Rn×n, we propose the following variational model for image restoration

u∗ = argmin
u∈Rn

{WTV(u) + µL2(u)} . (HWTV-L2)
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We note that in addition to the space-variant parameters αi contained in the WTV regulariser,
a further scalar data weight µ > 0 appears in (HWTV-L2). This makes our model an hybrid
version of the two space-variant (WTV-L2) and (TV-WL2) models, where local parameters αi

describing local image scales in a statistical sense (see Section 3) are used together with global
parameter µ which codifies the discrepancy w.r.t. the given AWGN level. The redundancy of
such parameter is therefore only apparent in (HWTV-L2) as its value is computed depending on
the global noise statistics in comparison with the local regularisation strength encoded by the
parameters αi.

2.1. Statistical derivation
We now justify the choice of the space-variant WTV regulariser in (WTV-L2) by means of
statistical arguments.

A common paradigm in image restoration is the Maximum A Posteriori (MAP) approach
by which the restored image is obtained as a global minimiser of the negative log-likelihood
distribution of the observed image g given the blurring operator K combined with some prior
PDF P (u) on the unknown target image u. In formulas:

u∗ ∈ argmax
u∈Rn

P (u|g;K) = argmin
u∈Rn

{− logP (g|u;K)− logP (u) } , (1)

where equality comes from the Bayes’ formula after dropping the normalisation term P (g).
The terms P (g|u;K) and P (u) in (1) are commonly referred to as the likelihood and prior
distribution, respectively: they encode available information on the statistics of the noise and
on the solution we seek, respectively.

A standard prior model for the gradient magnitude of the unknown image u is TV-Gibbs
prior so that P (u) = 1

Z exp (−α
∑n

i=1 ‖(Du)i‖p), where p ∈ {1, 2}. As pointed out in [12], such
choice can be equivalently interpreted by saying that each ‖(Du)i‖p distributes according to an
half-Laplacian PDF with parameter α > 0. The use of a one-parameter distribution may be
restrictive in modelling images with local properties at different scales (edges, texture. . . ). To
allow more flexibility, in [12] a space-variant model where gradient norms distribute according
to a half-Laplacian distribution with locally varying scale parameter αi > 0 has been proposed.
The prior associated to such choice is

P (u) =
1

Z
exp

(
−

n∑
i=1

αi||(Du)i||p

)
=

1

Z
exp (−WTV(u)) , p ∈ {1, 2} , (2)

where WTV is the regulariser defined in (WTV-L2).
For the sake of completeness, we recall that in the case of AWGN the likelihood term in (1)

takes the following form

P (g|u;K) =

n∏
i=1

1√
2πσ

exp

(
− (Ku− g)2

i

2σ2

)
=

1

W
exp

(
− ‖Ku− g‖

2
2

2σ2

)
, (3)

where σ > 0 denotes the AWGN standard deviation and W > 0 is a normalisation constant. By
plugging the expression (2) for P (u) and (3) P (g|u;K) in (1), we derive the variational model
(WTV-L2).

In our modelling, in order to describe local image features together with global noise
discrepancy, we further weight the data fitting term by a global parameter µ, thus obtaining the
hybrid reconstruction model (HWTV-L2).
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3. ADMM optimisation & automatic parameter selection
In order to solve numerically the image restoration problem (HWTV-L2), we use in the
following an ADMM-based algorithm combined with an adaptive estimation procedure of model
parameters along the iterations. To do so, we introduce two auxiliary variables w ∈ Rn and
t ∈ R2n and rewrite the model in the following constrained form:

{u∗, w∗, t∗} ← argmin
u,w,t

{ n∑
i=1

αi ‖ti‖p +
µ

2
‖w‖22

}
(4)

subject to w = Ku− g, t = Du.

We first define the augmented Lagrangian functional:

L(u,w, t; ρw, ρt;α1, . . . , αn, µ) :=
n∑

i=1

αi ‖ti‖p +
µ

2
‖w‖22 − ρTt (t−Du) +

βt
2
‖t−Du‖22

− ρTw(w − (Ku− g)) +
βw
2
‖w − (Ku− g)‖22, (5)

where βw, βt > 0 are scalar penalty parameters and ρw ∈ Rn, ρt ∈ R2n are the vectors of
Lagrange multipliers. The solution (u∗, w∗, t∗) of problem (6) is a saddle point for L in (5).
Hence, we can alternate a minimisation step with respect to the primal variables t, u, w with
a maximisation step with respect to the dual variables ρt, ρw, in combination with an iterative

update of the space variant parameters αi and µ, which hence will be denoted by α
(k)
i and µ(k).

In particular, for what concerns α
(k)
i we use the easy ML estimation strategy described next,

whereas for µ(k) we will rely on a global discrepancy principle

Primal variables update. The three primal sub-problems can be solved efficiently and in closed-
form by simple shrinkage/projection operators (in both cases p = 1, 2) and linear system solvers
- see [13, 12]. More in details, the sub-problem with respect to the t primal variable, after some
algebraic manipulations, can be written as,

t(k+1) ← argmin
t

n∑
i=1

{
α

(k)
i ‖ti‖p +

βt
2

∥∥∥∥ti − ((Du(k))i +
1

βt
(ρ

(k)
t )i

)∥∥∥∥2

2

}
. (6)

Denoting by,

q
(k)
i = (Du(k))i +

1

βt
(ρ

(k)
t )i ∈ R2,

the solution of each one-dimensional separable problem is given by

t
(k+1)
i = qi max

(
1−

α
(k)
i

βt‖q(k)
i ‖p

, 0

)
, p ∈ {1, 2} , i = 1, . . . , n.

Introducing

z(k) = Ku(k) − g +
1

βw
ρ(k)
w , (7)

we have that the updating formula for w reads:

w(k+1) =
βw

µ(k) + βw
z(k).
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Imposing a first order optimality condition with respect to the primal variable u, leads to the
following linear system,(

DTD +
βw
βt
KTK

)
u = DT

(
t(k+1) − 1

βt
ρ

(k)
t

)
+
βw
βt
KT

(
w(k+1) − 1

βw
ρ(k)
w + g

)
,

that can be solved since the coefficient matrix has full rank - see, e.g, [3].

Parameters update. In Algorithm 1 both the local space-variant parameters αi and the global
parameter µ are updated along the iterations. This is a standard strategy for this type of
optimisation problems (see, e.g., [6, 3]), especially in the case of a cheap update of parameters
adapting to the image quality improvement as the one considered in the following. Despite the
iterative change in the expression of the cost functional corresponding to such update, we remark
that nonetheless we observed empirical convergence of the algorithm. A theoretical proof of such
result is left for future research.

For any pixel i = 1, . . . , n, we consider the set Si := {xi,j}Nj=1 with xi,j = ‖(Du(k))j‖p, where

(Du(k))j are gradients in the square neighbourhood N r
i centred in i with side 2r+1 whose norm

is drawn from a half-Laplacian distribution with scale parameter αi. The likelihood function of
αi thus reads:

L(αi;Si) =
∏

xi,j∈Si

P (xi,j ;αi) =

N∏
j=1

P (xi,j ;αi) = αN
i exp

(
−

N∑
j=1

αixi,j

)
.

We now look for an αi > 0 maximising L, or equivalently, minimising F(αi;Si) :=
− log L(αi;Si). By imposing first order optimality on F with respect to αi, we obtain the
closed formula:

αi =

(
1

N

N∑
j=1

xi,j

)−1

, (8)

which can be handily updated along the iterations k ≥ 0 to estimate the local regularisation

parameters α
(k)
i at each pixel i = 1, . . . , n by taking as samples x

(k)
i,j = ‖(Du(k))j‖p, j = 1, . . . , N

i.e. the norms of the image gradients in the neighbourhood N r
i . We remark that the estimates

α
(k)
i in (8) can be efficiently computed based on 2D convolution (realised by a fast 2D discrete

transform) of the map of gradient norms with a square (2r + 1)× (2r + 1) averaging kernel.
The parameter µ is updated along the iterations so as to fulfil the global discrepancy principle

as described in [6]: we ask each iterate u(k) to satisfy the condition ||Ku(k) − g||2 ≤ δ := τσ
√
n,

where σ is the noise standard deviation and the parameter τ ≈ 1 is set a priori (see Section 4
for some experiments describing the sensitivity of the model to this parameter). In particular,
recalling the definition of z(k) given in (7), the update reads:

‖z(k)‖2 ≤ δ =⇒ µ(k+1) = 0, (9)

‖z(k)‖2 > δ =⇒ µ(k+1) = βw
(
‖ z(k)‖2/δ − 1

)
.

The ADMM pseudo-code is reported in Algorithm 1.
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Algorithm 1: ADMM for HWTV-L2 model

Input : observed image g ∈ Rn;
Parameters : r > 0, τ ≈ 1, βt, βw > 0;

Initialise u(0) = g, ρ
(0)
w = ρ

(0)
t = 0;

for k=0,1,. . . until convergence do
update parameters:

α
(k)
i by (8) for every i = 1, . . . , n,

µ(k) by (9),
update primal variables:

t(k+1) = argmint L(u(k), w(k), t; ρ
(k)
w , ρ

(k)
t ;α

(k)
1 , . . . , α

(k)
n , µ(k))

w(k+1) = argminr L(u(k), w, t(k+1); ρ
(k)
w , ρ

(k)
t ;α

(k)
1 , . . . , α

(k)
n , µ(k))

u(k+1) = argminu L(u,w(k+1), t(k+1); ρ
(k)
w , ρ

(k)
t ;α

(k)
1 , . . . , α

(k)
n , µ(k))

update dual variables:

ρ
(k+1)
w = ρ

(k)
w − βw

(
w(k+1) − (Ku(k+1) − g)

)
,

ρ
(k+1)
t = ρ

(k)
t − βt

(
t(k+1) −Du(k+1)

)
,

return u∗ = u(k+1).

4. Numerical results
In this section we report some numerical results obtained by solving the image reconstruction
model (HWTV-L2) via the ADMM Algorithm 1 with fixed penalty parameters βt = 20 and
βw = 100. In our experiments we observed that the convergence properties of the algorithm are
not affected by this choice, if not in terms of convergence speed. The value r > 0 denotes
the radius of the neighbourhoods N r

i defined in Sect. 3 and used to estimate the space-
variant parameters αi. Denoting by u ∈ [0, 1]n the ground-truth image, we assess the quality
of the reconstruction u∗ by means of the Improved Signal-to-Noise Ratio ISNR(g, u, u∗) :=
10 log10(‖g−u‖22/‖u∗−u‖22) and in terms of the Structural Similarity Index (SSIM). We compare
our results with the ones obtained by the standard (TV-L2) model, the SATV approach [4] based
on coupling the (TV-WL2) model with a local discrepancy-based procedure for automatically
selecting the parameters µi

1 and the bilevel learning strategy used in [8, 9] to estimate the
parameters αi of (WTV-L2) model via a nested optimisation procedure.

Image deblurring. We consider the skyscraper test image (256 × 256) corrupted by AWGN
of two levels σ = 0.02, 0.05, and Gaussian blur of band = 5 and sigma = 1. The ground-truth
image u and the observed image g for σ = 0.05 are shown in Fig.1a-1b, respectively. In this
test we highlight the improvements obtained by our (HWTV-L2) Algorithm 1 in comparison
to the standard (TV-L2) model and the SATV method, both solved by means of ADMM for
comparisons. As mentioned above, for the automatic adaption of the parameter µ along the
iterations, a value for the parameter τ needs to be chosen. For the three models considered, we
observed that the value of τ maximising the ISNR does not necessarily correspond to the value
maximising the SSIM, see Fig.2a. For the TV-L2 model the maximum SSIM is reached for τ ≈ 1,
while the ISNR achieves its maximum when τ ≈ 0.9, the latter being the case in which texture is
better preserved but noise is not completely removed. For SATV, the maximum ISNR and SSIM
values are reached approximately for the same τ . As remarked in [4], the SATV method is robust
w.r.t. the choice of the radius r of the neighbourhoods used for the estimation. Thus, we set such
parameter as the default value r = 5 in our tests. We performed similar sensitivity tests for our

1 We used the MATLAB code available at: https://www.math.hu-berlin.de/~hp_hint/software/satv.html.

https://www.math.hu-berlin.de/~hp_hint/software/satv.html
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(a) Original u. (b) Corrupted g.

Figure 1: Ground truth (with detail) and noisy version corrupted with AWGN with σ = 0.05.
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Figure 2: ISNR 2a and SSIM 2b values reached for different values of τ by applying TV-L2 and
SATV to the restoration of skyscraper test image in Fig.1a(bottom). For the same image,
ISNR 2c and SSIM 2d values achieved by HWTV-L2 method for different values of τ and r.

HWTV-L2 model for different (τ, r) values. Results are shown in Figs.2c-2d. For each method,
we then selected the parameter(s) yielding the maximum ISNR/SSIM values and compared the
results obtained. In Table 1 we report the achieved ISNR/SSIM values, whereas in Figs.3-4 we
show the associated restored images for the case of AWGN with σ = 0.05 - see Fig.1a(bottom).
We observe that our HWTV-L2 method results in higher quality reconstructions w.r.t. TV-
L2 and SATV. Visual inspection confirms the effectiveness of our approach in distinguishing
between textured and homogeneous regions, see Figs.3g-4g.

Image denoising. We now consider the test image turtle2 (150×200) corrupted by AWGN of
level σ = 0.1 (see Figs.5a -5b) and focus on the quality and computational improvements of
our HWTV-L2 method in the case of anisotropic TV (i.e. p = 1 in (TV)) in comparison to the
alternative bilevel optimisation strategy used [8, 9] for estimating the space-variant parameters
αi. After optimising the HWTV-L2 method over τ as discussed above, the maximum achieved
value is SSIM = 0.7708 (for r = 40, τ = 0.86), in comparison to SSIM = 0.7602 obtained by
using a bilevel optimisation strategy. The reconstructions are shown in Fig.5c-5d. We remark
that, in addition to the obtained SSIM and visual improvements, our approach exhibits a very
high computational efficiency, whereas bilevel codes are known to be computational expensive
and hardly applicable to high-resolution images. For instance, in this experiments the proposed
ADMM Algorithm 1 for the HWTV-L2 model required only 40 seconds on a standard laptop,
compared to the 1429 seconds required by the bilevel algorithm [9].

2 Photo courtesy of K. Papafitsoros.
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σ = 0.02 σ = 0.05

TV SATV HWTV TV SATV HWTV
ISNR 3.4701 3.6625 4.3331 1.9433 2.0414 2.5408
SSIM 0.8733 0.8966 0.9007 0.7335 0.7797 0.8099

Table 1: Maximum ISNR/SSIM values achieved by TV-L2, SATV and HWTV-L2 on the
skyscraper test image in Fig.1a(top) corrupted by AWGN of two different levels.

(a) TV-L2 (b) SATV (c) HWTV-L2 (d) α

(e) TV-L2 (zoom) (f) SATV (zoom) (g) HWTV-L2 (zoom) (h) u (zoom)

Figure 3: ISNR optimisation. First row : Reconstruction of image in Fig.1a by TV-L2

(τ = 0.91) 3a, SATV (τ = 0.94) 3b, HWTV-L2 (τ = 0.94, r = 14) 3c and α parameter
map obtained by the proposed parameter procedure 3d. Second row : zoomed details.

5. Conclusions
We proposed an image restoration method based on an hybrid, locally-weighted TV-L2

variational model where local regularisation parameters are combined with a global data fidelity
weight. Numerically, we solve the model by means of an ADMM-type algorithm combined with
an effective and efficient automatic update of the local parameters via ML estimation and a global
discrepancy constraint. Compared to standard as well as state-of-the-art competing models, the
proposed approach outperforms in terms of standard image quality measures (ISNR, SSIM) as
well as computational efficiency.
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