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ABSTRACT Software Defined Networking (SDN) is a very useful tool not only to manage networks
but also to increase network security, in particular by implementing Intrusion Detection Systems (IDS)
directly into the SDN architecture. The implementation of IDS within the SDN paradigm can simplify
the implementation, speed up incident responses, and, in general, allow to promptly react to cyber attacks
through proper countermeasures. Nevertheless, embedding IDS within SDN also introduces delays that
cannot be tolerated in specific network environments, like industrial control systems. This paper focuses
on the implementation of an IDS based on Machine Learning (ML) algorithms into an SDN architecture and
proposes a very practical approach to reduce the delay by using the sequential implementation of prototypes
of increasing software and hardware complexity so allowing quick tests to highlight the main problems, solve
them and pass to the next operative step. A fully validated performance evaluation is then shown by exploiting
all the presented solutions and by using further improved hardware features. The overall performance is
very good and compliant with most, even if not yet all, industrial control systems constraints. Results show
how the proposed solutions provide a significant improvement of the latency so opening the door to a real
implementation in the field.

INDEX TERMS Cybersecurity, intrusion detection system (IDS), software defined networking (SDN),
OpenFlow, key performance indicators (KPI).

I. INTRODUCTION
A cybersecurity technology pillar is represented by Intrusion
Detection Systems (IDSes), which are hardware/software
components or groups of devices designed to monitor net-
works and systems to detect malicious activities. There are
several IDS classification models, depending on, for exam-
ple: 1) the position of the detector: network-based intrusion
detection systems (NIDS) vs host-based intrusion detection
systems (HIDS); 2) the performed action: active IDS, also
called Intrusion Prevention Systems (IPS), versus passive
IDS; 3) the detection approach: Signature-based IDS, which
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look for specific data patterns, vs Anomaly-based IDS, which
identify the anomalies with respect to a behaviour considered
normal; 4) the analysis performed on network traffic: IDS
based on deep packet inspection implemented at application
layer where the application data are analysed in detail vs
statistical fingerprint based IDS, typically implemented at
TCP/IP layer by exploiting network statistics.

Intrusion detection systems are nowadays making a large
use of machine Learning technologies [1]. They can use tradi-
tional algorithms, or more sophisticated deep learning-based
algorithms [2], depending on the complexity of data. The
proposal reported in this paper derives from a research work
started with paper [3] that introduces an IDS based on sta-
tistical analysis which, after extracting a fingerprint for each
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network flow, uses a Machine Learning (ML) classifier to
decide whether a network flow is affected or not by Botnet
Malware.

In parallel with the evolution of IDSes, the need to sim-
plify network management has led to the development of
the Software Defined Networking (SDN) paradigm which
is based on the decoupling of data and control planes. Data
forwarding functions are located inside devices (switches,
routers, gateways) called SDN switches, while control func-
tions are concentrated in the SDN controllers. The commu-
nication between SDN controller and switches is handled
through the OpenFlow (OF) signalling protocol. The SDN
architecture is also a very useful tool to enhance cybersecu-
rity [4] and has several applications in the Industrial Control
System (ICS) field, including the power sector [5], espe-
cially to improve incident response. SDN allows increasing
the control system resiliency, thanks to the possibility to
dynamically re-configure the network after the detection of
a fault or of a compromised device, allowing to operate even
in degraded conditions. Resilience is particularly useful for
control networks within critical infrastructures, which require
an extremely high availability over time. Embedding an IDS
within an SDN architecture would allow to simplify network
configurations, speed up responses and reactions to attacks,
and improve system efficiency and resilience. In this context,
an highly relevant issue is the delay that the implementation
of SDN brings [6]. The introduced latency is particularly
critical in industrial control systems, in which we can find
severe constraints in terms of Quality of Service (QoS) [7].
In more detail, the implementation of an IDS within an
SDN controller may lead to the introduction of delays in the
process of packet forwarding, which may be not tolerable
for QoS to be assured in some specific networks, like the
ones dedicated to an ICS, in particular in the electrical sector
where packets have to respect very stringent requirements in
terms of latency. For example, the packets of the GOOSE
protocol, which belongs to the IEC 61850 suite for electrical
substation automation, have to reach its destination within
10 milliseconds. It becomes therefore necessary to deeply
analyse the delays introduced by an IDS in a SDN-based
network so to check the feasibility of the implementation in
such environments, also in view of a future implementation in
5G scenarios whose one of the pillars is just SDN. From the
point of view of the authors of this paper, the original idea to
implement a statistical fingerprint (SF) based IDS detector for
Botnet Malware, specifically an adaptation of the one in [3],
within an SDN controller is contained in [8]. The SF-IDS and
the entire SDN-based architectural solution is identified as
SDN-SF-IDS and is summarised in the next Section for the
sake of completeness.

The aim of the present paper is to analyse and reduce the
delays introduced by the SDN infrastructure in a Ethernet-
based network, in order to allow the implementation over
industrial environments such as the ones based on SCADA
systems, which usually have severe constraints in terms of
allowed latency.

The paper is structured as follows. Section II frames the
work presented in this paper in the context of the state of the
art. Section III contains a summary of the IDS proposed in [3]
and its adaptation to be embedded in the SDN architecture [8].
Section IV summarises the implementation of the SDN-SF-
IDS used as a testbed for this paper. The series of tests
made to identify the main causes of delays and introduce
improvements are shown in Section V. A full performance
evaluation is reported in SectionVI together with a discussion
about the results and some considerations over possible future
developments. Section VII contains the conclusions.

II. RELATED WORKS
The use of Machine Learning in Intrusion Detection Systems
is useful in different scenarios and is significantly grow-
ing in importance. [9] and [10] propose a method to detect
malicious Bot-IoT traffic in IoT Network, highlighting the
importance of the feature selection phase in the design of the
algorithm, which is significant also in the context of smart
cities [11]. [12] proposes a new framework model and a
hybrid algorithm for the selection of effective machine learn-
ing algorithms to detect Bot-IoT attacks in IoT environments
over smart cities. [13] discusses how SDN and Network
Function Virtualisation (NFV) technologies can help design
automatic incident-response mechanisms for an ICS. [14]
proposes an attack detection and localisation algorithm and
designs an intervention strategy in the networked robot con-
trol field. A software-defined approach to secure field zones
in an ICS is shown in [15]. The implementation of IDS within
SDN controllers is proposed in [16], [17], [18], and [19] that
provides a survey on SDN based network intrusion detec-
tion systems based on machine learning approaches. Few
papers measure the impact of an IDS implemented over SDN
architectures: [20] presents a QoS comparison of two open
source network intrusion detection systems (Snort IDS and
Bro IDS) in a SDN architecture. A preliminary analysis of
the delay introduced by the implementation of IDS over SDN
is presented by the same authors of this paper in [21].The
analysis reported in [21] is limited to the results contained
in Section V and omits many implementation details and
comments reported here. All the results reported in SectionVI
are totally new and not discussed before.

This paper presents a full prototype based methodology to
understand and tackle the numerical impact of the IDS imple-
mentation over SDN, reports all the implementation details,
and reports a full performance evaluation, which allows to
consider this paper a real step towards a real implementation
in the field.

III. SDN-SF-IDS ARCHITECTURE
The network-based IDS, called SF-IDS (statistical
fingerprint-IDS), originally introduced in [3], is aimed at
deciding whether an IP flow is malware affected or not.
SF-IDS uses the typical flow definition of TCP/IP networks:
IP Source and Destination (IP SRC and DST), TCP/UDP
Source and Destination Ports (SRC and DST Ports), and
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Protocol field in the IP packet header. It is structured into
a training phase developed by using a ground truth of known
flows and an operative classification and decision phase. Both
training and classification/decision phases are based on the
definition and extraction of a group of statistical parameters
related to each IP flow, which represent the statistical finger-
print of the flow, and on machine learning-based classifiers
devoted to distinguish normal frommalicious traffic. The key
idea is that the statistical fingerprint associated to each flow is
enough to infer the possible malicious nature of the flow. [3]
defines a statistical fingerprint composed of the following
14 parameters indicated as features of each flow:

• Number of packets
• Number of bytes
• Duration of the flow in seconds
• Byte rate
• Packet rate
• Average inter-arrival time of packets
• Standard deviation of inter-arrival time
• ‘‘Entropy’’ of the packet lengths
• Total number of subsets of packets having the same
length divided by the total number of packets of the flow

• Length of the first packet
• Length of the longest packet
• Length of the shortest packet
• Average packet length
• Standard deviation of the packet length

[3] compares 15 machine learning-based classifiers by
using a group of Botnet malware such as Cutwail, Pur-
ple Haze, Ramnit, Tbot, Zeus, ZeroAccess, AlienspyRAT,
Kuluoz, Sality, together with traffic classified as Normal.
Tests allow the evaluation of each single classifier and the
choice of the best ones by using a metric composed of the
sum of false alarms and missed detections. Random Forest is
the best one but also J48 and PART provide excellent results.
Random Forest assures a null percentage of false negatives
and false positives for Kuluoz, Tbot, and ZeroAccess, and
very close to null percentage for Sality and Zeus. It also
assures satisfying results for Cutwail and is very efficient
to recognise AlienspyRAT and Ramnit but it has some dif-
ficulties to identify normal traffic, often interpreted as Alien-
spyRAT or Ramnit. The first problem to tackle towards the
integration of SF-IDS and SDN is that the SDN standard
does not allow to get all 14 parameters used in [3] and listed
above. [22] proposes the reduction of the features involved for
malware detection to be compliant with the SDN-OpenFlow
standard and also with the features that most SDN switches
available in the market can really measure. The reduced sta-
tistical fingerprint is composed of the following 7 parameters:

• Number of packets
• Number of bytes
• Duration of the flow in seconds
• Byte rate
• Packet rate
• Average packet length

Again the tree based classifiers Random Forest and J48
achieve excellent performance in terms of accuracy, not so far
from the one obtained by using the 14 component statistical
fingerprint.

As said, the original idea to implement the SDN-SF-IDS
architecture is contained in [8] where the proposed sys-
tem exploits the 7-features Random Forest based SF-IDS
described above to detect the possible presence of malware
inside the network. [8] describes the design and preliminary
implementation within a Ryu-based SDN controller. The sys-
tem is tested by using the following Botnet malware: Asprox,
Cutwail, Darkness, Madness, Purplehaze, Zeus, Alienspy,
Kuluoz, Neris, Ramnit, Tbot, and Zeroaccess. The results
obtained through a large simulation campaign show the
effectiveness and robustness of the proposed system, which
reaches an accuracy level ranging from 88% to 97%. The
effect of the delay introduced by the SDN infrastructure,
fundamental to go towards a real testbed, is totally ignored
in this phase and, as said, is the object of this paper.

IV. SDN-SF-IDS IMPLEMENTATION
The description of the architecture of the proposed solution is
reported hereinafter. Section IV-A describes the basic struc-
ture of the SDN-SF-IDS, while IV-B contains the architecture
of the testbed used for the collection of the measures shown
in Section VI.

A. ARCHITECTURE OF SDN-SF-IDS
Conforming the SDN architecture, the SDN-SF-IDS proto-
type used as a testbed consists of two logically and phys-
ically separated parts: the SDN controller and SDN switch
(Figure 1).

FIGURE 1. Structure of the SDN-SF-IDS prototype.

Open Source software and Operating System (OS)
GNU/Linux are used for its implementation in order to be
able to operate, if necessary, on the source code of each
system component. The SDN controller, starting from the
description reported in Section III, is built by using Ryu Open
Source software and contains the 7-features SF-IDS imple-
mented by applying the ‘‘Random Forest’’ machine-learning
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scheme provided by the Scikit-learn Python library. The SDN
switch routes packets on the monitored network and works
with the SDN controller to perform the statistical analysis of
the flows. The SDN switch can be implemented by:

• Software switch: a computer running OS GNU/Linux
and Open virtual Switch (OvS) software that simulates
the operation of an SDN switch by managing the routing
of the network packets received by the interfaces.

• Hardware switch: a network device (switch, router, etc).

In both cases the communication between the switch and
controller takes place by the OpenFlow protocol. The perfor-
mance evaluation is essentially carried out through software
switches whose features and functionalities are improved in
each test. Only a group of final tests are carried out by using
a hardware switch.

For each packet of a given flow received from interfaces
#1 and #2, the SDN switch checks if its OF flow table
contains a rule concerning the packets of that flow. If a rule
is present, the SDN switch applies it to the entering packet.
For example, the packet can be forwarded or dropped. When
fully operational, OF flow tables contain the management
rules for each flow whose packets are routed through the
switch. Otherwise, if no rule is present, the SDN switch sends
aOpenFlow ‘‘PacketIn’’message to the SDN controller to ask
how to process it. The SDN controller receives this message
and sends it to the IDS code, implemented within the SDN
controller, which stores the data related to the newflowwithin
its own data structure, analyses the packet, and then, by using
the OpenFlow ‘‘FlowMod’’ message, adds the appropriate
rule or set of rules in the OF flow table of the SDN switch
to monitor and forward the data flow. As a last step, the
SDN controller sends the OpenFlow ‘‘PacketOut’’ message
to the switch to allow the packet to be forwarded. Figure 2
shows the sequence of message exchange within the SDN-
SF-IDS infrastructure when the SDN switch receives a new
flow. Figure 3 shows the case when the flow is already present
in the OF flow table.

The training of the ML algorithm is performed by using
a labelled data set of network flows that last about three
days and contain both traffic affected by Botnet Malware and
normal network traffic used in [8]. During this operation,
the SDN-SF-IDS system calculates and stores the statistics
and, once an experimentally chosen threshold in terms of
number of analysed flows is reached, starts the training phase
of the ‘‘Random Forest’’ algorithm as described before. Once
the training is finished, the IDS code saves the obtained
parameters inside a special file loaded during the SDN-SF-
IDS execution. When the class (‘‘Botnet Malware or ‘‘Nor-
mal’’) of each monitored flow is decided, a drop rule may be
added to the OF flow table of the SDN switch for each flow
classified as a ‘‘Botnet Malware’’. If necessary, it is possible
to change this rule in order to forward the flow catalogued as
a malware to a specific network port of the SDN switch where
additional analysis systems can be connected. Each of these

FIGURE 2. Timing diagram of the Openflow message exchange following
the arrival of the first packet of a new flow.

FIGURE 3. Timing diagram of the Openflow message exchange following
the arrival of the n-th packet of a previously detected flow.

operations introduces delays in the forwarding of the packets
and impacts on the QoS.

B. ARCHITECTURE OF THE TESTBED
In order to perform the evaluation of delays, the testbed in
Figure 1is extended by including a measurement system. The
laboratory tests are carried out by using the logic scheme
presented in Figure 4. #1 and #2 interfaces of the SDN-SF-
IDS are connected to a special system ‘‘Tester’’ that can
generate and receive a stream of Ethernet frames (each of
them encapsulating a single IP packet) and estimate the delay
suffered by each individual Ethernet frame (IP packet).

The Tester allows performing the delay measures but does
not influence the testbed behaviour. The Tester sends the net-
work flow to be filtered from the internal Ethernet interface
ethTINT to the port #1 of the SDN switch and receives the
filtered flow outgoing from port #2 of the SDN switch on
the interface ethTEXT . If T1 is the instant when the frame
leaves the ethTINT interface and T2 the instant when the frame
returns from the ethTEXT interface, it is possible to estimate
the total delay1TTOT generated by the SDN-SF-IDS through
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FIGURE 4. Logical connection of SDN-SF-IDS interfaces with the Tester.

the trivial subtraction in (1).

1TTOT = T2 − T1 (1)

V. DELAY ANALYSIS AND PROPOSED SOLUTIONS
The SDN-SF-IDS system performs different operations each
introducing peculiar delays. Particularly significant are the
delays related to the exchange of OF messages between SDN
switch and controller as well as the internal delays within
the two systems. Of course delays are greater as they involve
packet forwarding to the SDN controller and their analysis.
As a first example delays depend on whether the received
packet belongs to an already known flow, i.e. to a flow that
has rules already present in the OpenFlow flow table, or not,
because, for each newflow, the SDN controller must send two
OF messages (‘‘FlowMod’’ and ‘‘PacketOut’’) to the SDN
switch. Delays depend also on the Operating System (OS) of
the SDN-SF-IDS infrastructure because, to perform the anal-
ysis of a single network packet, many software components
must communicate and interact with each other and many
lines of code come into play such as Ethernet driver reception
and transmission queues, context switch between kernel and
user space. Each of these interactions adds a delay that needs
to be reduced as much as possible. Of course delays depend
also on the hardware features of the involved SDN controllers
and switches.

Prototypes of increasing complexity are created to over-
come the bottlenecks gradually highlighted by the tests car-
ried out in order to improve the performance in terms of
latency. Following the software switch concept presented
before, the two logical parts of the SDN-SF-IDS infrastruc-
ture are created by using two computers: the first (identified
as A) acts as an SDN controller; the second (identified as B)
as an SDN switch. As the tests progress, five different

versions of the SDN-SF-IDS infrastructure are implemented.
For the first three configurations the same controller A1 is
used by varying only the SDN switch Bi so getting config-
urations A1B1, A1B2, and A1B3, with the aim of obtaining
increasingly reduced latency at the cost of software complex-
ity and hardware requirements. The hardware features of A1,
B1, B2, and B3 are shown in Table 1.
The first set of tests aim to determine the influence of the

SDN switch/controller computational power and features on
the delays suffered by the analysed packets and to introduce
modifications to software and hardware to limit the problems.
This phase is not identified as performance evaluation since
the evaluation period is limited to tens ofminutes and does not
extend to tens of days as done later. The results of this phase
have been carried out through the quick implementation of
prototypes allowing a rapid practical evaluation so to pass to
the next operative steps.

A. A1B1
The A1B1 configuration brings out two SDN-SF-IDS prob-
lems related to each other and to the SDN controller: the
implementation introduces delays both in the management
phase of the new flows and in the phase of acquiring the
statistics, carried out periodically, aimed at classifying and
filtering the flows. With reference to the management of new
flows, peculiar delays are introduced for the first packet of
each new flow. An important part of this delay is linked to
the fact that the first packet of each new flow does not find a
dedicated rule within the OF flow table of the SDN switch.
The first tests are based only on the measurement of the time
1TPacketIn, defined in Figure 2, needed to process a single
OF ‘‘PacketIn’’message. An example behaviour of1TPacketIn
over time is shown in Figure 5, where shown minimum,
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TABLE 1. Hardware features of A1, B1, B2, and B3.

FIGURE 5. 1TPacketIn over time - single ‘‘PacketIN’’ (IDS with array structure, prototype A1B1).

maximum and average times are averaged over a window of
10.00 [s]. Maximum measured delay peak is 13.82 [ms] in
this example test that highlights the slowness of the search
and insertion phases of the flows within the data structure
used for their storage, based on arrays.

The attempt to improve is to change the data structure
based on arrays (list) into a structure based on hash tables
(dictionary) in the controller. Even if, as said, these results
are just quick examples, the result is quite clear in Figure 6
where the maximum delay peak is reduced to 3.22 [ms] in
operating conditions very similar to the ones experienced in
Figure 5.
From deeper analysis, it emerges that the frequency of new

flows detected by the SDN switch is not constant over time
but there are peaks of new flows and consequently peaks of
OpenFlow ‘‘PacketIn’’ messages sent to the SDN controller.
‘‘PacketIn’’ messages are processed in sequence so the delays
add up with consequent rapid extension of response times.

Concerning the total delay 1TTOT , including the statistics
acquisition, a sequence of samples over time concerning
the A1B1 prototype by using the hash structure is shown in
Figure 7. Again the minimum, maximum and average times
averaged over a window of 10.00 [s] are shown. The average
of maximum delays is 66.48 [ms] but it is possible to note
a number of peaks well above 100 [ms] up to a maximum
of 189.61 [ms], largely incompatible with many SCADA
applications.

B. A1B2
Always using the hash structure, the impact of more perform-
ing system resources is tested by replacing the SDNB1 switch
with the B2 one. The shown results are of the same type used
in the previous subsection: measured 1TTOT samples over
approximately 30 minutes are shown in 8.
The maximum delay peak is now 54.29 [ms]. The average

maximum delay is 5.96 [ms] and it is visible a limited number
of delays above 10 [ms].

C. PROCESSES ACTING IN PARALLEL TO IMPROVE IDS
PERFORMANCE
A portion of 1TTOT is due to the statistics acquisition phase.
Statistics computations and cataloguing action performed
by the ML algorithm are carried out within the main Ryu
process. For this reason, Ryu cannot process other requests,
including the management of new flows, until the end of the
cataloguing phase. Required time is not negligible. To solve
this problem, the analysis of the flow statistics and their
classification need to be moved to a special thread which
can process them in parallel so that Ryu main process is
free to handle other OpenFlow messages sent by the SDN
switch. In more detail, the mentioned problem is strictly
related to the structure of the Ryu softwarewhich is based on a
single process programmingmodel. Themanagement of each
receivedOpenFlow packet is done sequentially, so parsing the
OpenFlow ‘‘STATREQ’’ message blocks Ryu execution until
the operation is finished. Meanwhile other OF messages sent
to the SDN Controller A1 remain stuck in the system queue
of the socket associated with OpenFlow port 6633 without
being processed. This problem occurs for each received OF
message but it is particularly critical during the reception
of the OpenFlow ‘‘STATRESP’’ message as, after receiving
the message, the IDS module performs the extraction of the
statistical features and the cataloguing of the flows. Fur-
thermore, the statistics calculation procedure is repeated at
regular time intervals so blocking Ryu main process for a
variable time depending on the number of packets to be
catalogued. This aspect causes additional congestion in the
handling of OpenFlow ‘‘PacketIn’’ messages and consequent
delay in the management of new flows. To tackle the prob-
lem, the IDS module of the SDN-SF-IDS is enhanced by
adding two running threads acting in parallel with the main
Ryu process identified as ‘‘Ryu’’: the thread ‘‘Monitor’’ that
cyclically wakes up and requests the SDN switch to send the
statistics of the flows it monitors and then returns to sleep,
and the thread to compute statistics identified as ‘‘Statistics’’
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FIGURE 6. 1TPacketIn over time - single ‘‘PacketIN’’ (IDS with hash structure, prototype A1B1).

FIGURE 7. Packet delays 1TTOT , prototype A1B1, hash structure.

FIGURE 8. Packet delays 1TTOT , prototype A1B2.

that is awakened by the main process when the statistics
are ready to be computed. ‘‘Statistics’’ moves the necessary
data within a data structure reserved for it. In this way,
‘‘Statistics’’ and ‘‘Ryu’’ act in parallel without concurrent
access to data. ‘‘Ryu’’ signals the presence of new data to
‘‘Statistics’’ through a special Semaphore and immediately
starts managing the OpenFlow messages again, finding the
data structure empty and ready to store the data of new flows.
‘‘Statistics’’ computes the statistics of the flow and performs
the cataloguing by using the ‘‘Random Forest’’ algorithm,
then, if necessary, it proceeds by adding drop rules in the
switch and finally goes back to rest. The execution time is
limited to few milliseconds at each statistics request interval,
configurable by the user and set to 220 [s] in all shown tests.
Figure 9 shows a simplified diagram of the interaction ‘‘Ryu’’
and parallel ‘‘Monitor’’ and ‘‘Statistics’’ threads.
The first attempts to implement the solution in Figure 9

over the testbed A1B2 were not successful: a performance
limit emerged due to the software nature of the SDN switch
running inside a general purpose OS, such as GNU/Linux.
An analysis of the state of the art [23] shows that the pres-
ence of a scheduler that manages the execution of parallel

processes and other strictly technical elements introduces
additional waiting times that cannot be reduced. Data Plane
Development Kit (DPDK) can be used to overcome this prob-
lem. This development kit has been designed to ensure faster
handling of packets received by Ethernet cards at the price
of a significant increase in complexity. The DPDK libraries
work in close synergy with the Linux kernel and require the
presence of the most advanced architectural solutions offered
by today’s CPUs (Hugepages, IOMMU, VT-x, VT-d, etc.).

D. A1B3
B2 switch does not support the minimum hardware require-
ments to use DPDK5, so B3 switch equipped as detailed in
Table 1 is exploited. The DPDK library version 19.05.0 6 is
compiled and installed on system B3. The OvS software,
shown in Figure 9, version 2.11.1 8, is compiled to take
advantage of the DPDK libraries. The shown results are of
the same type used in Figures 7 and 8. Figure 10 contains
1TTOT values over approximately 30 minutes time.

The maximum delay peak is 11.76 [ms] and, in this small
example period, only two peaks over 10 [ms] are measured.
The average maximum delay is 4.59 [ms].
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FIGURE 9. Simplified diagram of the interaction between main process ‘‘Ryu’’, ‘‘Monitor ’’ and ‘‘Statistics’’ threads, acting in parallel.

FIGURE 10. Packet delays 1TTOT , prototype A1B3.

TABLE 2. Hardware features of the controller A2 as well as of the switches B4, and B5 and related measured 1TTOT .

VI. PERFORMANCE EVALUATION
Performed tests highlight the main problems and are a fun-
damental step to determine the solutions for the design of the
SDN-SF-IDS. It is now time to present a fully validated per-
formance evaluation by exploiting all the presented solutions
and also by using further improved hardware features. Table 2
contains the hardware features of the controller A2 as well as
of the software switch B4, and of the hardware switch B5.
The test data set includes months of traffic from the LAN of
our research lab and all the Pcaps at our disposal containing
Botnet. In detail, 82,999,983 samples have been taken over
a 2,377,497 [s] (between 27 and 28 days) monitoring phase.
The statistics request interval is again set to 220 seconds in

the tests shown in this Section. The results have the aim of
checking if the IDS is suitable to be applied in industrial
networks characterised by severe KPIs. Table 2 shows in
its last column a summary of the 1TTOT obtained by using
the configurations A2B4, mainly used in the remainder of
the paper, and A2B5. A high level software switch such as
B4 allows keeping 95.36% of packets below 10 [ms]. An
hardware switch allows improving: 98.1% of packets are
below 10 [ms]. Maximummeasured delay is 150 [ms] in both
case. The average results in Table 2 may be further investi-
gated by looking at Figure 11 which shows the delay abso-
lute frequency distribution histogram by using the classes in
the abscissa axis for the A2B4 entire performed tests in the
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FIGURE 11. Delay absolute frequency distribution histogram for the performed tests in the configuration A2B4.

TABLE 3. Delay relative frequency distribution for the performed tests in
the configuration A2B4.

left part of the figure and its magnifying glass in the range
[0 - 19]i [ms]. Table 3 shows the relative frequency distribu-
tion of the delay versus the delay classes used in Figure 11.
Table 4 shows the cumulative relative frequency distribution
of the delay in the same conditions. Values contained in
Table 4 are very meaningful: associating relative frequencies
to probabilities, the probability to have a delay below 10 [ms]
is 0.9536, below 20 [ms] 0.9602, below 50 [ms] 0.9842,
below 80 [ms] 0.9997, below 100 [ms] 0.9999, and below
150 [ms] is 1. SCADA and GOOSE-based industrial net-
works have very stringent KPIs for maximum delays [24].
These KPIs imply device-to-device transfer times below
20 [ms] for non-tripping and P2/P3 class messages and below
100 [ms] for non-tripping and P1 class messages. Concerning

TABLE 4. Cumulative relative delay frequency distribution for the
performed tests in the configuration A2B4.

these classes the results obtained in this paper may be satis-
fying: the probability that the delay is below 20 [ms] is above
0.96 and the probability that the delay is below 100 [ms] is
close to 1. The KPI of tripping messages and intervention
class P1 messages require transfer times below 10 ms. As far
as this class is concerned, the probability we can assure is
0.95. Required KPIs for tripping and P2/P3 intervention class
messages must be below 3 [ms]. Concerning these messages,
the left part of Figure 11 may be of help: the probability to
have a delay below 1 [ms] is 0.8959, below 2 [ms] 0.9108,
and below 3 [ms] 0.9453. The obtained result is somehow
compatible also with a delay requirement fixed to 3 [ms] even
if it would be recommendable to further reduce the latency
of the SDN-SF-IDS system in this case. These long tests,
lasting almost one month, composed of 82,999,983 samples,
allow additional investigation by differentiating the protocol
encapsulated in IPv4 through the Protocol field in the IP

109858 VOLUME 10, 2022



A. Fausto et al.: Reduction of the Delays Within an IDS Based on SDN

TABLE 5. Number of samples, ethertype, Protocol field (if any or, alternatively, Protocol encapsulated in Ethernet), maximum measured delay for delay
class, delay class, percentage of packets in the given delay class - configuration A2B4.

FIGURE 12. Logical structure of the OF rules as used by the A2 controller.

header or, alternatively, if no IPv4 packet is transported over
Ethernet, either ARP or IPv6. Table 5 shows: number of
samples, ethertype values, Protocol field or Protocol encapsu-
lated in Ethernet, Maximum measured delay for delay class,
Delay Class, and Percentage of packets having the delay in
the given class. There is a clear dependence between the
delay suffered and the used protocol. This dependence is
linked to the number of OpenFlow rules checked before
packet forwarding, as depicted in Figure 12, and by the
necessary interactions with the SDN sontroller. Non-IPv4-
based protocols (ARP and IPv6 in Table 5) are forwarded
after checking the rules of the first OpenFlow flow table with
minimal delays. IPv4 protocols other than UDP and TCP are
forwarded once the second OpenFlow flow table is reached
and suffer longer delays; TCP packets are forwarded once the
second OpenFlow flow table is reached, while UDP packets
once the third OpenFlow flow table is reached, assuming they
have already been analysed. If not, OpenFlow messages are
exchanged with the controller causing longer delays. In more
numerical detail, ICMP experiences delays up to 80 [ms] but

99.38% of packets is below 6 [ms], IGMP up to 110 [ms]
but with 99.82% of packets below 10 [ms], OSPF up to
110 [ms] but with 99.47% of packets below 3 [ms], and PIM
up to 100 [ms] but with 99.52% of packets below 3 [ms].
All the other protocols experience really low delays. TCP
and UDP deserve additional attention. Figure 13 shows the
delay absolute frequency distribution histogram by using the
classes in the abscissa axis, for TCP packets, and its magni-
fying glass in the range [0 - 19] ms, as previously done in
Figure 11. Figure 14 contains the same quantities concerning
UDP packets and showsmany samples between 0-4 [ms], less
samples between 4-30 [ms], and a new increment between
30-70 (2.88%). Peaks between 0 and 4 [ms] are linked to the
packets belonging to a flow already present in the OpenFlow
flow table while the second peak between 30-70 [ms] is
linked to the interaction with the controller for the insertion
of the relative rule in the OpenFlow flow table. TCP packet
delay behaves not so differently from the general histogram
in Figure 11. Table 6 shows the cumulative relative frequency
distribution of the delay for TCP packets and the reported
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FIGURE 13. Delay absolute frequency distribution histogram for the performed tests in the configuration A2B4, TCP
packets.

FIGURE 14. Delay absolute frequency distribution histogram for the performed tests in the configuration A2B4, UDP
packets.

values are similar to the ones in Table 4. This may be also
expected because 90.79% of the traffic is represented by the
TCP one. UDP packet delay behaves differently. Table 7
shows the cumulative relative frequency distribution of the
delay for UDP packets: again associating relative frequencies
to probabilities, the probability to have a delay below 10 [ms]
is 0.4094 (very low), below 20 [ms] 0.6105 (still very low
for an industrial network), and below 30 [ms] 0.8581 (still
far from industrial network requirements). The probability to
have a delay below 40 [ms] is 0.9770, which is the value
shown in Table 5. For delays above 40 [ms] the values are
comparable with the general behaviour in Table 4. Actu-
ally, the histogram of the delays of the UDP protocol in
Figure 14 shows a sort of plateau between 0-40 [ms] which
rapidly decreases after 40 [ms], reaching negligible valus

after 80 [ms] delays. The connectionless nature of UDP
linked to the fact that UDP ports practically change for each
packet causes a high interaction with the controller that has
to catalogue new flows and add the appropriate rules. This
action leads to noticeable increases in the delay.

The next steps to improve the performance may be in the
optimisation of the Ryu SDN controller source code or in its
replacement with a more efficient software. Alternatively it
is possible to exploit the features of an hardware switch such
as B5 in Table 2. The corresponding configuration is A2B5.
As already shown in Table 2 the probability to have a delay in
the range [0-10] [ms] is 0.981, value that must be compared
with 0.9536 obtained by using B4. B5 hardware switch has
slightly better performance thanB4 software switch improved
with DPDK but the performance is comparable. The effect of
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TABLE 6. Cumulative relative delay frequency distribution for the performed tests in the configuration A2B4 - TCP traffic.

TABLE 7. Cumulative relative delay frequency distribution for the performed tests in the configuration A2B4 - UDP traffic.

hardware switching, anyway, should be further investigated.
To date, the cost of a B4 computer configured to operate
as a high performance SDN switch is less than the cost of
a hardware SDN switch B5. Attention needs to be given
to software, concerning unexpected software upgrade, CPU
overload and memory exhaustion leading to swap memory
on disk, which can lower the performance of the system.

VII. CONCLUSION
The present paper focuses on the reduction of delays intro-
duced by the implementation of a statistical-based Intrusion
Detection System within a Software Defined Networking
infrastructure. The main causes of delays are experimentally
identified together with the main solutions to be addressed.
These solutions are implemented step by step and finally
tested over a high quality software switch that guarantees very
good performance compliant with most industrial control
systems constraints:

1) industrial system device-to-device transfer time for
non-tripping and P2/P3 classmessagesmust be below 20 [ms]
and for non-tripping and P1 class messages below 100 [ms].
Referring to all exchanged protocols in the reported tests, the
probability that the delay is below 20 [ms] is above 0.96 and
the probability that the delay is below 100 [ms] is close to 1.

2) KPI of tripping messages and intervention class P1
messages require transfer times below 10 [ms]. Concerning
reported tests, the probability that the delay is below 10 [ms]
is 0.95.

3) KPIs for tripping and P2/P3 intervention class messages
require a delay below 3 [ms]. Concerning the obtained results,
the probability to have a delay below 1 [ms] is 0.8959, below
2 [ms] 0.9108, and below 3 [ms] 0.9453.

The obtained results are somehow compatible also with
a delay requirement fixed to 3 [ms] even if it would be
recommendable to further reduce the latency of the SDN-SF-
IDS system.

A chance to increase the performance is to use a hardware
switch, which is tested and offers slightly better performance
than the one of software switch improved with DPDK. The
effect of hardware switching needs to be investigated in full
detail as done for the software switch.
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