
Dipartimento di
Informatica, Bioingegneria,
Robotica e Ingegneria dei Sistemi

Resource-awareness
for Java-like languages and beyond

Riccardo Bianchini

Theses Series DIBRIS-TH-2024-42

Ph.D. Thesis

Università di Genova
Dipartimento di Informatica, Bioingegneria,

Robotica ed Ingegneria dei Sistemi
Ph.D. Thesis in

Computer Science and System Engineering
Computer Science Curriculum

Resource-awareness
for Java-like languages and beyond

by

Riccardo Bianchini

January 2024

Ph.D. Thesis in Computer Science and System Engineering (S.S.D. INF/01)
Dipartimento di Informatica, Bioingegneria, Robotica ed Ingegneria dei Sistemi
Università di Genova

Candidate
Riccardo Bianchini
riccardo.bianchini@edu.unige.it

Title
Resource-awareness
for Java-like languages and beyond

Advisors
Elena Zucca
DIBRIS, Università di Genova
elena.zucca@unige.it

Francesco Dagnino
DIBRIS, Università di Genova
francesco.dagnino@dibris.unige.it
Paola Giannini
DiSSTE, Università del Piemonte Orientale
paola.giannini@uniupo.it

External Reviewers
Ugo Dal Lago
Dipartimento di Informatica - Scienza e Ingegneria, Università di Bologna
ugo.dallago@unibo.it

Harley Eades III
School of Computer and Cyber Sciences, Augusta University
harley.eades@gmail.com

Stephanie Weirich
School of Engineering and Applied Science, University of Pennsylvania
sweirich@seas.upenn.edu

Location
DIBRIS, Univ. di Genova
Via Opera Pia, 13
I-16145 Genova, Italy

Submitted On
January 2024

mailto:riccardo.bianchini@edu.unige.it
mailto:elena.zucca@unige.it
mailto:francesco.dagnino@dibris.unige.it
mailto:paola.giannini@uniupo.it
mailto:ugo.dallago@unibo.it
mailto:harley.eades@gmail.com
mailto:sweirich@seas.upenn.edu

Abstract

Reasoning about programs and their correctness concerns, in the first place,
their input/output behaviour. However, there are many important properties
which are non-extensional, that is, allow to further classify programs. Among
those, a significant class are the properties related to the resources needed
to carry out the computation successfully. There are many possible views of
what a “resource” is, e.g., space or time complexity; in this thesis, a resource is
meant to be some external data, used in a program through an internal name
(a variable), and resource-awareness means the ability to track, statically and/or
at runtime, how these resources are used by the program.

The aim of this thesis is to provide design guidelines and formal foundations
to smoothly add resource-awareness to a programming language, mainly fo-
cusing on the object-oriented paradigm. This is a novelty, since in the literature
resource-awareness has been studied in the context of functional languages.
To achieve this goal, the key idea is to use annotations, called grades, which,
intuitively, represent the availability of a resource. These annotations are ele-
ments of an algebraic structure called grade algebra, and both type system
and reduction are given parametrically on an arbitrary grade algebra, model-
ing a particular kind of usages. We also investigate the possibility for to the
programmer to define her/his grades. The thesis includes two chapters which
achieve additional results, notably the application of the proposed approach to
a functional language, a novel formulation of resource-aware semantics, and
an application of grades to a challenging case, that is, to characterize sharing
and immutability properties in the context of imperative languages.

v

Acknowledgements

I am very grateful to my supervisors, Elena Zucca, Francesco Dagnino and
Paola Giannini. Your advice and guidance have been essential for the develop-
ment of the results of this thesis and all through my PhD. Basically, you taught
me how science works. I am also immensely grateful to you for availability,
patience and also kindness towards me.
I am really thankful to the members of my thesis committee for their in-

sightful feedback and constructive criticisms that immensely contributed to
the refinement of this research.
Special thanks go to my parents, Stefania and Marco, and to my sister,

Francesca. You have been an unwavering and moral support and encourage-
ment throughout my academic journey. Your love and belief in my abilities
have been a constant source of strength.

My sincere appreciation goes to all my colleagues and friends in the DoCS
(Dottorandi in Computer Science). In particular, among others, I want to thank
Marco, Luca, Eros, Marianna, Matteo, Federico, Lorenzo, Andrea, Pietro and,
obviously, Francesco: your companionship, stimulating discussions, and shared
wisdom enriched and made this journey much funnier.

Lastly, I am grateful to all the authors and researchers whose works have
guided and informed my study. This thesis would not have been possible
without the contributions and support of all these individuals. Thank you.

vii

Contents

1 Introduction 1

2 Resource-awareness 5
2.1 Terminology and notations . 5
2.2 Coeffect systems . 5
2.3 Graded type systems . 8
2.4 Grade algebras and coeffect contexts 9

3 Graded Featherweight Java 15
3.1 Java-like calculus . 16
3.2 Resource-aware semantics . 19
3.3 Resource-aware type system 25
3.4 Resource-aware soundness . 31

4 Multi-graded Featherweight Java 39
4.1 Combining grades . 39
4.2 A general construction . 43
4.3 User-defined grades . 48

5 Beyond object-oriented and small-steps 59
5.1 Functional calculus and resource-aware semantics 60
5.2 Resource-aware type system 68
5.3 Resource-aware soundness . 74
5.4 Programming examples and discussions 83

6 Beyond structural coeffects 89
6.1 Imperative Java-like calculus 90
6.2 Sharing and mutation . 92
6.3 Coeffects for sharing . 95
6.4 Case study: type modifiers for uniqueness and immutability . 111
6.5 Expressive power . 124

7 Related work 129
7.1 Resource-aware type systems 129
7.2 Resource-aware semantics . 131
7.3 Sharing . 132

8 Conclusion 135

ix

1
Introduction

Recent research has devoted an increasing interest to resource-awareness, that
is, to formal techniques for reasoning about the usage of resources in compu-
tations. The aim is to compare programs not only by considering what is com-
puted, but also how it is computed; that is, to consider some non-extensional
properties of programs, by a quantitative analysis. There are many possible
views of what a “resource” is, such as space, time, etc.; in this thesis, a resource
is an external, that is, not generated by the program itself, data structure.
In programs we associate names to data structures, to refer to them, so the
most natural way to model resources is to track the usage of free variables.
Resource-awareness can be accomplished statically, by a resource-aware type
system, and/or dynamically, by a resource-aware semantics.

resource-aware type systems The aim of resource-aware type sys-
tems is to statically approximate not only the expected result type of a program,
but also the way resources are used. As a concrete example, we would like to
distinguish the functions 𝜆x .5, 𝜆x .x, and 𝜆x .x + x, since they use their para-
meter 0, 1, and 2 times in their body, respectively, whereas a standard type
system would assign the same type to all three.
The idea of resource-aware type systems originates from linear logic and

linear type systems. Linear logic, introduced by Girard in his seminal paper
[34], treats logical statements as resources, which cannot be duplicated or
discarded. Analogously, in linear type systems, variables are used exactly once;
they are a kind of substructural type systems, so called since some structural
rules admissible in standard type systems are disallowed, notably weakening
and contraction, as will be detailed in Section 2.2. The ability to duplicate
and discard resources can be recovered by the exponential modality !, also
called “bang”. Using this mechanism, it is possible to distinguish variables
used exactly once from those used without constraints. As next step, we can
refine the bang modality to keep track exactly of how many times a resource
is used. This is achieved by considering a family of modalities !𝑛 indexed by
(extended) natural numbers and by formulating appropriate weakening and
contraction rules, to correctly handle indices. The next step is to realise that
natural numbers are just an instance of an algebraic structure. This leads to a
further generalization obained by considering modalities indexed by grades,
that is, elements of a given algebraic structure, basically a semiring specifying
sum +, multiplication ·, 0 and 1 constants, and some kind of order relation. In

1

2 introduction

this way, we can track an arbitrary notion of resource usage, just by choosing
a specific semiring of grades.

Type-and-coeffect systems, or simply coeffect systems, are a recently proposed
form of type systems which is resource-aware. They are, in a sense, the dual
of effect systems: given a generic type judgment 𝛤 ⊢ e : 𝜏 , effects can be
seen as an enrichment of the type 𝜏 , modeling side effects of the execution,
whereas coeffects can be seen as an enrichment of the context 𝛤 , modeling
how execution needs to use external resources.
Starting from a usual typing judgement, of shape x1 : 𝜏1, . . . , x𝑛 : 𝜏𝑛 ⊢ e : 𝜏 ,

where we track only the type of variables, we add grades, called coeffects when
used in this position, to track also usage of variables, obtaining the judgment:

x1 :𝑟1 𝜏1, . . . , x𝑛 :𝑟𝑛 𝜏𝑛 ⊢ e : 𝜏
The intuition is that coeffect 𝑟𝑖 models how variable x𝑖 is used in expression e.
In the example above, we could use as coeffects natural numbers, to count how
many times parameter x is used in function bodies, that is, 0, 1, 2, respectively.

Graded (modal) type systems extend type-and-coeffect systems by tracking
not only how variables are used in e, but also how the result of e should be
used in a program context. In this thesis, this will be expressed by a judgment:

x1 :𝑟1 𝜏1, . . . , x𝑛 :𝑟𝑛 𝜏𝑛 ⊢ e : 𝜏𝑟

where we also add a grade annotation to the expression type. Since, as it will
be described in Section 2.4, grades belong to a semiring, commonly indicated
by R, for grades we use the meta-variable 𝑟 .

resource-aware semantics (and soundness) The basic feature of
resource-aware semantics is that substitution of variables is not performed once
and for all, as in the standard 𝛽-rule, but each variable occurrence is replaced
when needed, by also decrementing the availability of the associated resource
in some way. A precursor of this idea can be considered the lambda-calculus
with molteplicities by Boudol [13], where expressions include environments
associating to each variable a bag (multiset) of resources; we can replace a
variable only if there is at least one resource in the bag.

Resource-aware semantics as in this thesis has been inspired by the recent
work in [18], where expressions are reduced in an external environment which
associates to variables, besides a value, a grade, as in resource-aware type
systems. Reduction is stuck if a certain usage is not allowed.

By having resource-awareness both in type system and semantics, it is pos-
sible to express and prove a resource-aware soundness theorem. This theorem
not only guarantees standard soundness, but also that a well-typed program
has a computation which does not get stuck due to resource consumption.

resource-awareness for java-like languages and beyond The
main aim of the thesis is the design of a resource-aware extension for Java-
like languages. To this end we provide, for a paradigmatic Java-like calculus,
resource-aware semantics and graded type system, both parametric on ar-
bitrary grades, and prove resource-aware soundness. We also show that the

introduction 3

language can support different kinds of grades, even user-defined. The thesis
includes two chapters which go beyond such main aim, as detailed below.

outline and relation with published papers

chapter 2 After fixing some terminology and notations used throughout
the thesis, we provide a gentle introduction to coeffect systems and graded
type systems. Moreover, we formally define grade algebras, the structures we
use to model usage of resources.

chapter 3 We present a simple Java-like calculus equipped with grades.
Notably, we provide a resource-aware semantics and type system, and prove
resource-aware soundness. The content of this chapter is taken from

Riccardo Bianchini, Francesco Dagnino, Paola Giannini, Elena
Zucca. Multi-graded Featherweight Java. ECOOP 2023 [10]

In [7], not included in the thesis, it is shown that resource-aware semantics
can be naturally seen as a kind of monitored reduction.

chapter 4 The aim is to allow different kinds of grades to be used in the
same program. To this end, we provide the construction of a grade algebra of
heterogeneous grades from given grade algebras and homomorphisms between
them. Moreover, we allow the programmer to define her/his grades, by writing
grade classes, implementing methods corresponding to the ingredients of a
grade algebra, and homomorphism classes, implementing the homomorphisms
between grade algebras. Grade annotations are values of grade classes. The
content of this chapter is partly reworked from the following papers:

Riccardo Bianchini, Francesco Dagnino, Paola Giannini, Elena
Zucca. A Java-like calculus with user-defined coeffects. ICTCS
2022 [9]

Riccardo Bianchini, Francesco Dagnino, Paola Giannini, Elena
Zucca. A Java-like calculus with heterogeneous coeffects. TCS
2023 [8]

Riccardo Bianchini, Francesco Dagnino, Paola Giannini, Elena
Zucca. Multi-graded Featherweight Java. ECOOP 2023 [10]

More precisely, the construction of the grade algebra of heterogeneous
grades is as by Bianchini et al. [10]. The derivation of grade algebras and
homomorphisms from programmer’s code, instead, largely extends that by
Bianchini et al. [8, 9], where only coeffects are considered, combining grades of
different kinds always leads to the trivial grade, and implementation is directly
expressed in Java code rather than also in an extended Java-like calculus as
done here.

4 introduction

chapter 5 We go beyond the object-oriented paradigm and define a func-
tional language equipped with grades, posing additional challenges, such as
higher-order functions and (recursive) structural types. Moreover, we go bey-
ond small-step semantics, where subterms need to be annotated to ensure
that their reduction happens at each step with the same grade, describing
the resource-aware semantics in big-step style, so that no annotations are
needed. Since in big-step semantics non-terminating and stuck computations
are indistinguishable, we extend the big-step judgment to model divergence
explicitly by using a generalized inference system, where rules are interpreted
in an essentially coinductive way. The content of this chapter is taken from

Riccardo Bianchini, Francesco Dagnino, Paola Giannini, Elena
Zucca. Resource-aware soundness for big-step semantics. OOPSLA
2023 [11]

chapter 6 We go beyond structural coeffect systems, considered in the
previous chapters, where the coeffect of each single variable is computed
independently, by considering a significant example in which they are not
adequate. Notably, we want to use coeffects to statically guarantee relevant
properties on the usage of memory in an imperative language. Indeed, the fact
that a program introduces sharing between two variables, say x and y, for
instance through a field assignment x.f = y in an object-oriented language,
clearly has a coeffect (grade) nature, being a particular way to use the resources
x and y. However, this sharing information cannot be tracked per-variable.
The content of this chapter is taken from

Riccardo Bianchini, Francesco Dagnino, Paola Giannini, Elena
Zucca,Marco Servetto. Coeffects for sharing andmutation. OOPSLA
2022 [12]

2
Resource-awareness

After fixing in Section 2.1 some terminology and notations used throughout
the thesis, in Section 2.2 and Section 2.3 we provide a gentle introduction, first
to (type-and-)coeffect systems, an enriched form of type systems which tracks
the way external resources (variables) are used in an expression, and then to
graded type systems, where we also track the way results of expressions are
used in a program context. In these sections we use the notion of grade in
a rather general way; in Section 2.4, we formally define grade algebras, the
structures we use to model usage of resources.

2.1 Terminology and notations

Elements of a grade algebra are called coeffects when they are used in a context,
on the left-hand side of a typing judgment, grades when they are used as
annotations of types, on the right-side. We use the metavariables 𝜎 and 𝜏

for standard (that is, non-graded) types, and the metavariables S and T for
graded types. Given e, e′ expressions and x variable, we denote by e[e′/x] the
usual capture-avoiding substitution, and given two sequences representing
maps, e.g., contexts 𝛥 and 𝛤 , with disjoint domains, we denote by 𝛥, 𝛤 their
concatenation (union of maps).

2.2 Coeffect systems

To illustrate how a (type-and-)coeffect system works, we start from a simple ex-
ample, namely, a coeffect system for the call-by-name simply-typed 𝜆-calculus,
where we trace when a variable is either not used, or used linearly (that is,
exactly once), or used in an unrestricted way, as expressed by assigning to
the variable a coeffect 𝑟 which is either 0, or 1, or ∞. In Figure 2.1 we report
reduction and the standard type system, and in Figure 2.2 the coeffect system.
A coeffect context 𝛾 , of shape x1 : 𝑟1, . . . , x𝑛 : 𝑟𝑛 , where order is immaterial

and x𝑖 ≠ x𝑗 for 𝑖 ≠ 𝑗 , represents a map from variables to coeffects where only a
finite number of variables have non-zero coeffect. A (type-and-coeffect) context,
of shape 𝛤 = x1 :𝑟1 𝜏1, . . . , x𝑛 :𝑟𝑛 𝜏𝑛 , with analogous conventions, represents
the pair of the standard type context x1 : 𝜏1 . . . , x𝑛 : 𝜏𝑛 , and the coeffect context
x1 : 𝑟1, . . . , x𝑛 : 𝑟𝑛 .

5

6 resource-awareness

e ::= n | x | 𝜆x:𝜏 .e | e1e2
𝜏 ::= int | 𝜏1 → 𝜏2
𝛤, 𝛥 ::= x1 : 𝜏1, . . . , x𝑛 : 𝜏𝑛

(AppAbs) (𝜆x:𝜏 .e)e′ → e[e′/x] (App)
e1 → e′1

e1e2 → e′1e2

(t-const)
𝛤 ⊢ n : int

(t-var)
𝛤 ⊢ x : 𝜏

𝛤 (x) = 𝜏

(t-abs)
𝛤, x : 𝜏1 ⊢ e : 𝜏2

𝛤 ⊢ 𝜆x:𝜏1.e : 𝜏1 → 𝜏2
(t-app)

𝛤 ⊢ e1 : 𝜏2 → 𝜏1 𝛤 ⊢ e2 : 𝜏2
𝛤 ⊢ e1e2 : 𝜏1

figure 2.1 Simply-typed lambda calculus

e ::= n | x | 𝜆x:𝜏 .e | e1e2
𝑟 ::= 0 | 1 | ∞
𝜏 ::= int | 𝜏1

𝑟−→ 𝜏2
𝛾 ::= x1 : 𝑟1, . . . , x𝑛 : 𝑟𝑛
𝛤, 𝛥 ::= x1 :𝑟1 𝜏1, . . . , x𝑛 :𝑟𝑛 𝜏𝑛

(AppAbs) (𝜆x:𝜏 .e)e′ → e[e′/x] (App)
e1 → e′1

e1e2 → e′1e2

(t-const) ∅ ⊢ n : int
(t-var)

x :1 𝜏 ⊢ x : 𝜏

(t-sub)
𝛤 ⊢ e : 𝜏
𝛤 ′ ⊢ e : 𝜏 𝛤 ⪯ 𝛤 ′ (t-abs)

𝛤, x :𝑟 𝜏1 ⊢ e : 𝜏2
𝛤 ⊢ 𝜆x:𝜏1.e : 𝜏1

𝑟−→ 𝜏2

(t-app)
𝛤1 ⊢ e1 : 𝜏2

𝑟−→ 𝜏1 𝛤2 ⊢ e2 : 𝜏2
𝛤1 + 𝑟 · 𝛤2 ⊢ e1e2 : 𝜏1

figure 2.2 A simple structural coeffect system

2.2 coeffect systems 7

In literature, there are many definitions of coeffects/grades [2, 5, 16, 18,
30, 31, 46, 49, 56], generally assuming that they form a semiring, that is, are
equipped with a sum +, and a multiplication ·, satisfying some natural axioms,
and moreover some form of order relation. In the thesis, we assume a variant
of such definitions called a grade algebra, formally defined in Section 2.4,
providing a partial order ⪯ besides sum and multiplication. In the example,
the (pretty intuitive) definition of such a structure is given below.

0 ⪯ ∞, 1 ⪯ ∞

+ 0 1 ∞
0 0 1 ∞
1 1 ∞ ∞
∞ ∞ ∞ ∞

· 0 1 ∞
0 0 0 0
1 0 1 ∞
∞ 0 ∞ ∞

The typing rules use three operators on contexts: partial order ⪯, sum + and
scalar multiplication · of a coeffect with a context, which are defined by first
taking, on coeffect contexts, the pointwise application of the corresponding
operator on coeffects, and then lifting to type-and-coeffect contexts, as will be
formally defined at the end of Section 2.4 and in Section 3.3. Note that when
lifted to type-and-coeffect contexts the sum becomes partial, since we require
a common variable to have the same type.

In rule (t-const) no variable is used. In rule (t-var), only the given variable
is used, exactly once. An alternative formulation found in literature is

(t-var)
0 · 𝛤 + x :1 𝜏 ⊢ x : 𝜏

where the coeffect context is one of those representing the map where the
given variable is used exactly once, and no other is used. Indeed, 0 · 𝛤 is a
context where all variables have 0 coeffect. This generalization is already
provided in our presentation, since we include a subsumption rule (t-sub),
allowing a well-typed expression to be typed in a less specific context, where
coeffects are overapproximated. This rule is also useful, e.g., in the presence of
a conditional construct, as its typing rule usually requires the two branches to
be typed in the same context (that is, to use resources in the same way) and
subsumption relaxes this condition. In literature this rule is often contravariant
in the context, see, e.g., Gaboardi et al. [30]. This happens since the order on
contexts is defined as the pointwise extension of subtyping, that is, models the
strength of type assumptions: the smaller the context is, the stronger these
assumption are. Here we do not consider subtyping, and order is the pointwise
extension of order on grades, that is, models the amount of resources: the
larger the context is, more available resources we have.

In rule (t-abs), the type of a lambda expression is decorated with the coef-
fect assigned to the binder when typechecking the body. In rule (t-app), the
coeffects of an application are obtained by summing the coeffects of the first
subterm, which is expected to have a functional type decorated with a coeffect,
and the coeffects of the argument multiplied by the decoration of the functional
type.
Let us compare the standard type system in Figure 2.1 and the coeffect

system in Figure 2.2. In the former, when typechecking an expression, the

8 resource-awareness

context is just propagated top-down to subterms, in rule (t-const) there is
no requirement on the context, and in rule (var) the only requirement is that
the variable should be present. Consequently, the following weakening and
contraction rules turn out to be admissibile:

(weak)
𝛤 ⊢ e : 𝜏

𝛤, x : 𝜏 ′ ⊢ e : 𝜏 (contr)
𝛤, x : 𝜏 ′, y : 𝜏 ′ ⊢ e : 𝜏

𝛤, z : 𝜏 ′ ⊢ e[z/x] [z/y] : 𝜏
Rule (weak) states that, in typechecking an expression, we can always add

useless resources, whereas rule (contr) states that we can unify resources with
the same type. As a consequence, looking at the typing context, we have no
information about the effective usage of variables, since they may have been
discarded by (weak) or duplicated by (contr). In a coeffect system, instead,
when typechecking an expression, the context is computed bottom-up, starting
from the axioms. Thus, the above rules take the following form:

(coeff-weak)
𝛤 ⊢ e : 𝜏

𝛤, x :𝑟 𝜏 ′ ⊢ e : 𝜏
0 ⪯ 𝑟 (coeff-contr)

𝛤, x :𝑟 𝜏 ′, y :𝑠 𝜏 ′ ⊢ e : 𝜏
𝛤, z :𝑟+𝑠 𝜏 ′ ⊢ e[z/x] [z/y] : 𝜏

We can add a new variable, but only if its grade is greater or equal than 0; for
instance, we cannot safely add a linear variable, since it should necessarily be
used once. We can unify two resources with the same type, but keeping track
of their usage by assigning to the new variable the sum of the coeffects of the
old ones. Therefore, the typing context provides complete information about
the usage of all variables.

Extrapolating from the example, we can distill the following ingredients of
a coeffect system:

• The typing rules use three operators on contexts (partial order, sum, and
scalar multiplication) defined on top of the corresponding operators on
coeffects.

• Coeffects are computed bottom-up, starting from the axioms, in particular
from that for the variable.

• As exemplified in (t-app), the coeffects of a compound term are computed
by a linear combination (through sum and scalar multiplication) of those
of the subterms. The coefficients are determined by the specific language
construct considered in the typing rule.

• The partial order is used for overapproximation.

Note also that, by just changing the grade algebra, we obtain a different coeffect
system. For instance, an easy variant is to consider as coeffects the natural
numbers, with, as partial order, the equality, and as sum and multiplication
the standard ones, tracking exactly how many times a variable is used. The
definition of contexts and their operations, and the typing rules, can be kept
exactly the same.

2.3 Graded type systems
With coeffect systems, we can track how resources (variables) are used in
an expression. However, we would like to also track how the result of an

2.4 grade algebras and coeffect contexts 9

expression is used in a program context; for instance, in a Java-like language,
how many times the result of a method should be used by a client. To this
end, we can decorate types with grades, obtaining a graded type system. Our
approach is novel with respect to that generally used in the literature on graded
types. Notably, in such works the production of types is 𝜏 ::= . . . | □𝑟𝜏 , that
is, grade decorations can be arbitrarily nested. Correspondingly, the syntax
includes an explicit box construct, which transforms a term of type 𝜏 into a
term of type □𝑟𝜏 , through a promotion rule which multiplies the context with
𝑟 , and a corresponding unboxing mechanism, as illustrated below by rules
inspired by [2].

(prom)
𝛤 ⊢ e : 𝜏

𝑟 · 𝛤 ⊢ [e] : □𝑟𝜏
(unbox)

𝛤 ⊢ e : □𝑟𝜏 𝛥, x :𝑠 ·𝑟 𝜏 ⊢ e′ : 𝜏 ′
𝑠 · 𝛤 + 𝛥 ⊢ let [x] = e in e′ : 𝜏 ′

The aim of the thesis is to design resource-aware semantics and type system,
and formulate and prove resource-aware soundness, in an as much as pos-
sible light, abstract and general way, without requiring ad-hoc changes to the
underlying language. Hence, we prefer a much lighter approach, likely more
convenient for Java-like languages, where the syntax of terms is not affected.
The production for types is T ::= 𝜏𝑟 , that is, all types are (once) graded; in
contexts, types are non-graded, and grades are used as coeffects, leading to a
judgment of shape x1 :𝑟1 𝜏1, . . . , x𝑛 :𝑟𝑛 𝜏𝑛 ⊢ e : 𝜏𝑟 . Moreover, since there is no
boxing/unboxing, there is no explicit promotion rule, but different grades can
be assigned to an expression, assuming different coeffect contexts. In other
words, promotion is applied “locally”.

The fact that syntax is unaffected is very important from a language design
point of view, meaning that it would be possible in principle to add resource-
awareness to an arbitrary language, along the lines shown here:

• without requiring the programmer to learn new non-trivial constructs
• ensuring backward compatibility, since old code will still work, by embed-

ding plain types into graded types. A simple way to do this is to assume a
top grade and see plain types as graded with such top. For instance, with
grades 𝑟 ::= 0 | 1 | ∞, non-graded code can be seen as∞-graded.

A precise definition of the algebraic structure we require on grades is
provided in the next section.

2.4 Grade algebras and coeffect contexts
In this section we introduce the algebraic structures we will use throughout
the thesis. At the core of our work there are grades, namely, annotations in
terms and types expressing how or how much resources can be used during
the computation. As we will see, we need some operations and relations to
properly combine and compare grades in the resource-aware semantics and
type system, hence we assume grades to form an algebraic structure called
grade algebra defined below.

10 resource-awareness

definition and examples Our definition is a slight variant of others
in literature [2, 5, 16, 18, 30, 31, 46, 49, 56], which are all instances of ordered
semirings.

definition 2.4.1 (Ordered Semiring): An ordered semiring is a tuple R =

⟨|R|, ⪯, +, ·, 0, 1⟩ such that:

• ⟨|R|, ⪯⟩ is a partially ordered set;
• ⟨|R|, +, 0⟩ is a commutative monoid;
• ⟨|R|, ·, 1⟩ is a monoid;

and the following axioms are satisfied:

• 𝑟 · (𝑠 + 𝑡) = 𝑟 · 𝑠 + 𝑟 · 𝑡 and (𝑠 + 𝑡) · 𝑟 = 𝑠 · 𝑟 + 𝑡 · 𝑟 , for all 𝑟, 𝑠, 𝑡 ∈ |R|;
• 𝑟 · 0 = 0 and 0 · 𝑟 = 0, for all 𝑟 ∈ |R|;
• if 𝑟 ⪯ 𝑟 ′ and 𝑠 ⪯ 𝑠′ then 𝑟 +𝑠 ⪯ 𝑟 ′+𝑠′ and 𝑟 ·𝑠 ⪯ 𝑟 ′ ·𝑠′, for all 𝑟, 𝑟 ′𝑠, 𝑠′ ∈ |R|;

An ordered semiring is a semiring with a partial order on its carrier which
makes sum and multiplication monotonic with respect to it. Roughly, sum and
multiplication (which is not necessarily commutative) provide parallel and
sequential composition of usages, 1 models the unitary or default usage and
0 models no use. Finally, the partial order models overapproximation in the
resource usage, which allows for flexibility, for instance we can have different
usage in the branches of an if-then-else construct.

In an ordered semiring there can be elements 𝑟 ⪯ 0, which, however, make
no sense in our context, since 0 models no use. Hence, in a grade algebra we
forbid such grades.

definition 2.4.2 (GradeAlgebra): An ordered semiring R = ⟨|R|, ⪯, +, ·, 0, 1⟩
is a grade algebra if 𝑟 ⪯ 0 implies 𝑟 = 0, for all 𝑟 ∈ |R|.

This property is not technically needed, but motivated by modelling reasons
and to simplify some definitions. Moreover, it can be forced in any ordered
semiring, just noting that the set 𝐼⪯0 = {𝑟 ∈ |R| | 𝑟 ⪯ 0} is a two-sided ideal
and so the quotient semiring R/𝐼⪯0 is well-defined and is a grade algebra. We
now give some examples of grade algebras adapted from the literature.

example 2.4.3 : 1. The simplest way of measuring resource usage is by
counting, as can be done using natural numbers with their usual oper-
ations. We consider two grade algebras over natural numbers: one for
bounded usage Nat≤ = ⟨ℕ, ≤, +, ·, 0, 1⟩ taking the natural ordering and
another for exact usage Nat= = ⟨ℕ,=, +, ·, 0, 1⟩ taking equality as order,
thus basically forbidding approximations of resource usage.

2. The linearity grade algebra ⟨{0, 1,∞}, ≤, +, ·, 0, 1⟩} is obtained from Nat=

above by identifying all natural numbers strictly greater than 1 and taking
as order 0 ≤ ∞ and 1 ≤ ∞; the affinity grade algebra only differs for the
order, which is 0 ≤ 1 ≤ ∞.

2.4 grade algebras and coeffect contexts 11

3. In the trivial grade algebra Triv the carrier is a singleton set |Triv| = {∞},
the partial order is the equality, sum and multiplication are defined in the
trivial way and 0Triv = 1Triv = ∞.

4. The grade algebra of extended non-negative real numbers is the tuple
R∞≥0=⟨[0,∞], ≤, +, ·, 0, 1⟩, where usual order and operations are extended
to ∞ in the expected way.

5. A distributive lattice L = ⟨|L|, ≤,∨,∧,⊥,⊤⟩, where ≤ is the order, ∨ and
∧ the join and meet, and ⊥ and ⊤ the bottom and top element, respect-
ively, is a grade algebra. Such grade algebras do not carry a quantitative
information, as the sum is idempotent, but rather express how/in which
mode a resource can be used. They are called informational in [2].

6. Given grade algebras R = ⟨|R|, ⪯R, +R, ·R, 0R, 1R⟩ and S = ⟨|S |, ⪯S, +S, ·S, 0S, 1S⟩,
the product R × S = ⟨{⟨𝑟, 𝑠⟩ | 𝑟 ∈ |R| ∧ 𝑠 ∈ |S |}, ⪯, +, ·, ⟨0R, 0S⟩, ⟨1R, 1S⟩⟩,
where operations are the pairwise application of the operations for R and
S, is a grade algebra.

7. Given a grade algebra R = ⟨|R|, ⪯R, +R, ·R, 0R, 1R⟩, set Ext R = ⟨|R| + {∞}, ⪯
, +, ·, 0R, 1R⟩ where ⪯ extends ⪯R by adding 𝑟 ⪯ ∞ for all 𝑟 ∈ |Ext R| and
+ and · extend +R and ·R by 𝑟 + ∞ = ∞ + 𝑟 = ∞, for all 𝑟 ∈ |Ext R|, and
𝑟 · ∞ = ∞ · 𝑟 = ∞, for all 𝑟 ∈ |Ext R| with 𝑟 ≠ 0R, and 0R · ∞ = ∞ · 0R = 0R.
Then, Ext R is a grade algebra, where∞ models unrestricted usage.

8. Given R as above, set |Int(R) | = {⟨𝑟, 𝑠⟩ ∈ |R| × |R| | 𝑟 ⪯R 𝑠}, the set
of intervals between two points in |R|, with ⟨𝑟, 𝑠⟩ ⪯ ⟨𝑟 ′, 𝑠′⟩ iff 𝑟 ′ ⪯R 𝑟

and 𝑠 ⪯R 𝑠′. Then, Int(R) = ⟨|Int(R) |, ⪯, +, ·, ⟨0R, 0R⟩, ⟨1R, 1R⟩⟩ is a grade
algebra, with + and · defined pointwise.

As a more concrete example we can think of a file that, after being opened,
should be closed. This check could be done with the grade algebra in Ex-
ample 2.4.3(2) by annotating the file with coeffect 1.

taxonomy Grade algebras can be further classified depending whether
they satisfy some properties, as detailed below.
We say that a grade algebra is trivial if it is isomorphic to Triv, that is, it

contains a single point. It is easy to see that a grade algebra is trivial iff 1 ⪯ 0,
as this implies 𝑟 ⪯ 0, hence 𝑟 = 0, for all 𝑟 ∈ |R|, by the axioms of ordered
semiring and Definition 2.4.2.
A grade algebra is still a quite wild structure, notably there are weird phe-

nomena due to the interaction of sum andmultiplicationwith zero. In particular,
we can get 0 by summing or multiplying non-zero grades, that is, there are
relevant usages that when combined elide each other.

definition 2.4.4 : Let R = ⟨|R|, ⪯, +, ·, 0, 1⟩ be a grade algebra. We say that

• R is integral if 𝑟 · 𝑠 = 0 implies 𝑟 = 0 or 𝑠 = 0, for all 𝑟, 𝑠 ∈ |R|;
• R is reduced if 𝑟 + 𝑠 = 0 implies 𝑟 = 𝑠 = 0, for all 𝑟, 𝑠 ∈ |R|.

12 resource-awareness

All grade algebras in Example 2.4.3 are reduced, provided that the parameters
are reduced as well. Similarly, they are all integral except Items 5 and 6. Indeed,
in the former there can be elements different from ⊥ whose meet is ⊥ (e.g.,
disjoint subsets in the powerset lattice), while in the latter there are “spurious”
pairs ⟨𝑟, 0⟩ and ⟨0, 𝑠⟩ whose product is ⟨0, 0⟩ even if both 𝑟 ≠ 0 and 𝑠 ≠ 0.
Fortunately, there is an easy construction making a grade algebra both reduced
and integral.

definition 2.4.5 : Set R = ⟨|R|, ⪯, +, ·, 0, 1⟩ an ordered semiring. We denote
by R0 the ordered semiring ⟨|R| + {0̂}, ⪯, +, ·, 0̂, 1⟩ where we add a new point 0̂
and extend order and operations as follows:

0̂ ⪯ 𝑟 iff 0 ⪯ 𝑟 ,
𝑟 + 0̂ = 0̂ + 𝑟 = 𝑟 ,
𝑟 · 0̂ = 0̂ · 𝑟 = 0̂, for all 𝑟 ∈ |R| + {0̂}.

It is easy to check that the following proposition holds.

proposition 2.4.6 : If R = ⟨|R|, ⪯, +, ·, 0, 1⟩ is a grade algebra, then R0 is a
reduced and integral grade algebra.

Applying this construction to Items 5 and 6 we get reduced and integral
grade algebras. However, for the latter the result is not yet satisfactory. Indeed,
the resulting grade algebra still has spurious elements which are difficult to
interpret. Thus we consider the following refined construction.

example 2.4.7 : Let R and S be non-trivial, reduced and integral grade
algebras. The smash product of R and S is R ? S = ⟨|R ? S |, ⪯, +, ·, 0̂, ⟨1R, 1S⟩⟩,
where |R?S | = | (R×S)0 | \ (|R|×{0S}∪{0R}×|S |), ⪯, + and · are the restrictions
of the order and operations of (R × S)0, as in Definition 2.4.5, to the subset
|R ? S |, and 0̂ is the zero of (R × S)0. It is easy to see R ? S is a non-trivial,
reduced and integral grade algebra.

Finally, an important classification of grade algebras depends on the exist-
ence of grades which are non-comparable with 0. Indeed, through weakening,
see rule (coeff-weak) in Section 2.3, an expression which does not use a
resource (variable) x, can be typechecked in a context where x has a grade 𝑟
such that 0 ≤ 𝑟 . In this context, the grade represents a usage which is available,
but discarded by the program. For instance, in the linearity grade algebra of
Example 2.4.3(2), the element ∞ can be discarded, while the element 1 cannot.
This remark leads to the following definition.

definition 2.4.8 : Let R = ⟨|R|, ⪯, +, ·, 0, 1⟩ be a grade algebra. We say that
R is affine if 0 ⪯ 𝑟 holds for all 𝑟 ∈ |R|.

Note that this condition is equivalent to requiring just 0 ⪯ 1 again thanks
to the axioms of ordered semiring. Instances of affine grade algebras from
Example 2.4.3 are bounded usage (Item 1) and distributive lattices (Item 5),
while exact usage (Item 1) and linearity (Item 2) are not affine.

2.4 grade algebras and coeffect contexts 13

A homomorphism of grade algebras 𝑓 : R → S is a monotone function
𝑓 : ⟨|R|, ⪯R⟩ → ⟨|S |, ⪯S⟩ between the underlying partial orders, which pre-
serves the semiring structure, that is, satisfies the following equations:

• 𝑓 (0R) = 0S and 𝑓 (𝑟 +R 𝑠) = 𝑓 (𝑟) +S 𝑓 (𝑠), for all 𝑟, 𝑠 ∈ |R|;
• 𝑓 (1R) = 1S and 𝑓 (𝑟 ·R 𝑠) = 𝑓 (𝑟) ·S 𝑓 (𝑠), for all 𝑟, 𝑠 ∈ |R|.

Grade algebras and their homomorphisms form a category denoted by GrAlg ,
with GrAlg aff the full subcategory of the affine grade algebras. We are particu-
larly interested in the initial and final affine grade algebras, since in Chapter 4
they will play a special role.
Consider an affine grade algebra R. Then, we can define functions

𝜁R : |R| → |Triv| and 𝜄R : |Nat|≤ → |R| as follows:

𝜁R (𝑟) = ∞ 𝜄R (𝑚) =
{
0R if𝑚 = 0
𝜄R (𝑛) +R 1R if𝑚 = 𝑛 + 1

Roughly, 𝜁R maps every element of R to ∞, while 𝜄R maps a natural number
𝑛 to the sum in R of 𝑛 copies of 1R. We can easily check that both these
functions give rise to homomorphisms 𝜁R : R → Triv and 𝜄R : Nat≤ → R. This is
straightforward for 𝜁R, while for 𝜄R follows by arithmetic induction. Then, we
can prove the following result.

proposition 2.4.9 : The following facts hold:

1. Nat≤ is the initial object in GrAlg aff;

2. Triv is the terminal object in GrAlg aff.

Proof: Item 2 is straightforward as the singleton set is a terminal object in
the category of sets and functions. Towards a proof of Item 1, let 𝑓 : Nat≤ → R
be a grade algebra homomorphism and note that, since𝑛 = 1+· · ·+1 (𝑛 times),
for all 𝑛 ∈ ℕ, and 𝑓 preserves sums and the unit, we get 𝑓 (𝑛) = 𝑓 (1) +R · · · +R
𝑓 (1) = 1R +R · · · +R 1R (𝑛 times). That is, we have 𝑓 (𝑛) = 𝜄R (𝑛), for all 𝑛 ∈ ℕ.
Therefore, to conclude, we just have to show that the map 𝜄R is a grade algebra
homomorphism. The fact that 𝜄R (0) = 0R and 𝜄R (1) = 1R is immediate. The
fact that 𝜄R (𝑛+𝑚) = 𝜄R (𝑛)+R 𝜄R (𝑚) and 𝜄R (𝑛 ·𝑚) = 𝜄R (𝑛) ·R 𝜄R (𝑚) follows from
a straightforward induction on 𝑛, using distributivity and nullity properties
of the grade algebra R. Finally, to prove monotonicity, consider 𝑛 ≤ 𝑚 and
proceed by induction on𝑚 − 𝑛. If𝑚 − 𝑛 = 0, then 𝑛 =𝑚 and so the thesis is
trivial. If𝑚−𝑛 = 𝑘 +1, we have𝑚− (𝑛+1) = 𝑘 , then by induction hypothesis
we get 𝜄R (𝑛 + 1) ⪯R (𝜄R (𝑚). Since 𝜄R (𝑛 + 1) = 𝜄R (𝑛) +R 𝜄R (1) and 0R ⪯R 𝜄R (1),
we get 𝜄R (𝑛) = 𝜄R (𝑛) +R 0R ⪯R 𝜄R (𝑛) +R 𝜄R (1) ⪯R 𝜄R (𝑚), as needed. □

coeffect contexts Another kind of objects we will work with are maps
assigning grades to variables. These inherit a nice algebraic structure from the
one of the underlying grade algebra.

14 resource-awareness

Assume a grade algebra R = ⟨|R|, ⪯, +, ·, 0, 1⟩ and a set 𝑋 . The set of func-
tions from 𝑋 to |R| carries a partially ordered commutative monoid struc-
ture given by the pointwise extension of the additive structure of R. That is,
given 𝛾,𝛾 ′ : 𝑋 → |R|, we define 𝛾 ⪯ 𝛾 ′ iff, for all 𝑥 ∈ 𝑋 , 𝛾 (𝑥) ⪯ 𝛾 ′(𝑥), and
(𝛾 +𝛾 ′) (𝑥) = 𝛾 (𝑥) +𝛾 ′(𝑥) and 0̂(𝑥) = 0, for all 𝑥 ∈ 𝑋 . Moreover, we can define
a scalar multiplication, combining elements of |R| and a function 𝛾 : 𝑋 → |R|;
indeed, we set (𝑟 · 𝛾) (𝑥) = 𝑟 · 𝛾 (𝑥), for all 𝑟 ∈ |R| and 𝑥 ∈ 𝑋 . It is easy to
see that this operation turns the partially ordered commutative monoid of
functions from 𝑋 to |R| into a partially ordered R-module.
The support of a function 𝛾 : 𝑋 → |R| is the set S(𝛾) = {𝑥 ∈ 𝑋 | 𝛾 (𝑥) ≠ 0}.

Denote by R𝑋 the set of functions 𝛾 : 𝑋 → |R| with finite support. The partial
order and operations defined above can be safely restricted to R𝑋 , noting that
S(0̂) = ∅, S(𝛾 + 𝛾 ′) ⊆ S(𝛾) ∪ S(𝛾 ′) and S(𝑟 · 𝛾) ⊆ S(𝛾). Therefore, R𝑋 carries a
partially ordered R-module structure as well.

In Chapter 3, Chapter 4, and Chapter 5, the type systems rely on structural
coeffect contexts, that is, (representations of) functions in R𝑋 , with𝑋 set of vari-
ables. The fact that structural coeffect contexts form a module has been firstly
noted in [46, 56]. In Chapter 6 we will show a non-structural example. That is,
a module different from R𝑋 described above, used mostly in the literature, is
needed, where operations on coeffect contexts are not pointwise.

3
Graded Featherweight Java

The main source of inspiration for the work presented in this and the follow-
ing chapter has been Granule [49], a fully-fledged functional programming
language equipped with graded modal types. In Granule, different kinds of
grades can be used at the same time; however, available grades are fixed in the
language. Our aim is to study a similar support for Java-like languages. To this
end, we introduce in a variant of Featherweight Java [39] (FJ for short), the
paradigmatic calculus used in literature to model such kind of languages, types
decorated with grades, taken, parametrically, in an arbitrary grade algebra.

Moreover, we want to prove that the graded type system we propose overap-
proximates the use of resources. Since resource usage is notmodeled in standard
operational semantics, we also define a resource-aware semantics for FJ, para-
metric on an arbitrary grade algebra as well, which tracks how much each
available resource is consumed at each step, and is stuck when the needed
amount of a resource is not available. The semantics is given independently
from the type system, as it is the standard approach in calculi.

We prove a soundness theorem, stating that the graded type system guar-
antees resource-aware soundness. More technically, typechecking generates
annotations in expressions, for annotated expressions produced in this way
there is a reduction sequence which does not get stuck.

As already discussed in Section 2.3, we take a much lighter approach with
respect to existing literature on graded modal types, likely more convenient
for Java-like languages, where the syntax of terms is not affected, and the
production for types is T ::= 𝜏𝑟 , that is, all types are (once) graded.

In this and the following chapter, we assume the underlying grade algebra
to be affine, see Definition 2.4.8. This is due to the fact that, in record/object
calculi, generally width subtyping is allowed, meaning that components can
be discarded at runtime, whereas object construction happens by sequential
evaluation of the fields, see at page 85 for more comments.

In Section 3.1 we report the standard FJ calculus without grades. In Sec-
tion 3.2 and Section 3.3 we describe the resource-aware semantics, and the
resource-aware type system, respectively, providing in Section 3.4 a resource-
aware version of soundness with its proof.

15

16 graded featherweight java

3.1 Java-like calculus

The calculus is a variant of FJ [39]. The syntax is reported in the top section
of Figure 3.1. We write es as metavariable for e1, . . . , e𝑛 , 𝑛 ≥ 0, and analogously
for other sequences. We assume variables x, y, z, . . ., class names C, D, field
names f , and method names m. Types are distinct from class names to mean
that they could be extended to include other types, e.g., primitive types, as
we will do in Chapter 6. In addition to the standard FJ constructs, we have a
block expression, consisting of a local variable declaration, and a body.
To be concise, the class table is abstractly modeled as follows, omitting its

(standard) syntax:

• fields(C) gives, for each class C, the sequence 𝜏1 f1; . . . 𝜏𝑛 f𝑛; of its fields,
assumed to have distinct names, with their types1

• mbody(C,m) gives, for each method m of class C, its parameters and
body

The semantics is defined differently from the original one; that is, reduction
is defined on configurations e |𝜌 , where 𝜌 is an environment, a finite map from
variables into values. In this way, variable occurrences are replaced one at a
time by their value in the environment, rather than once and for all.
This definition can be easily shown to be equivalent to the original one,

and it is convenient for our aims since, in this presentation, free variables in
an expression can be naturally seen as resources which are consumed each
time a variable occurrence is used (replaced by its value) during execution. In
other words, this semantics can be naturally instrumented by adding grades
expressing the “cost” of resource consumption, as we will do in Section 3.2.

Apart from that, the rules in Figure 3.1 are straightforward; only note that, in
rules (invk) and (block), parameters (including this) and local variable are
renamed to fresh variables, to avoid clashes. Single contextual rules are given,
rather than defining evaluation contexts, to be uniform with the instrumented
version, where this presentation is more convenient.

We preferred the more general term environment for the map 𝜌 , rather than
heap as, e.g., done by Choudhury et al. [18]. However, our semantics is still
heap-based, in the sense that the the map is used as in the state monad: resource
annotations could in principle either be decremented or incremented, and the
amount of a resource used during a computation is the difference between its
input and output grade. Instead, Torczon et al. [54] define an environment-based
big-step operational semantics, where the resource annotations can only be
decremented, and provide an upper bound on the amount required during
computation.
The type system relies on the type information extracted from the class

table which is again abstractly modeled as follows:

1 We keep a unique fields function as in the original formulation [39]; however, it should be
noted that field types only matter in the type system.

3.1 java-like calculus 17

e ::= x | e.f | new C(es) | e.m(es) | {𝜏 x = e; e′} expression
𝜏 ::= C type (class name)
v ::= new C(vs) value
𝜌 ::= x1 ↦→ v1, . . . , x𝑛 ↦→ v𝑛 environment

(var)
x |𝜌 → v |𝜌 𝜌 (x) = v

(field-access)
new C(v1, . . . , v𝑛).f𝑖 |𝜌 → v𝑖 |𝜌

fields(C) = 𝜏1 f1; . . . 𝜏𝑛 f𝑛;
𝑖 ∈ 1..𝑛

(invk)
v0.m(v1, . . . , v𝑛)|𝜌 →

e[y0/this] [y1/x1 . . . y𝑛/x𝑛] |𝜌 ′

v0 = new C(_)
mbody(C,m) = ⟨x1 . . . x𝑛, e⟩
y0, . . . , y𝑛 ∉ dom(𝜌)
𝜌 ′ = 𝜌, y0 ↦→ v0, . . . , y𝑛 ↦→ v𝑛

(block) {𝜏 x = v; e}|𝜌 → e[y/x] |𝜌, y ↦→ v
y ∉ dom(𝜌)

(field-access-ctx)
e |𝜌 → e′ |𝜌 ′

e.f |𝜌 → e′.f |𝜌 ′

(new-ctx)
e𝑖 |𝜌 → e′𝑖 |𝜌 ′

new C(v1, . . . , v𝑖−1, e𝑖 , . . . , e𝑛)|𝜌 → new C(v1, . . . , v𝑖−1, e′𝑖 , . . . , e𝑛)|𝜌 ′

(invk-rcv-ctx)
e0 |𝜌 → e′0 |𝜌 ′

e0.m(e1, . . . , e𝑛)|𝜌 → e′0.m(e1, . . . , e𝑛)|𝜌 ′

(invk-arg-ctx)
e𝑖 |𝜌 → e′𝑖 |𝜌 ′

v0.m(v1, . . . , v𝑖−1, e𝑖 , . . . , e𝑛)|𝜌 → v0.m(v1, . . . , v𝑖−1, e′𝑖 , . . . , e𝑛)|𝜌 ′

(block-ctx)
e1 |𝜌 → e′1 |𝜌 ′

{𝜏 x = e1; e2}|𝜌 → {𝜏 x = e′1; e2}|𝜌 ′

figure 3.1 Syntax and standard reduction

18 graded featherweight java

(t-sub)
𝛤 ⊢ e : 𝜏
𝛤 ⊢ e : 𝜏 ′ 𝜏 ≤ 𝜏 ′ (t-var)

𝛤 ⊢ x : 𝜏
𝛤 (x) = 𝜏

(t-field-access)
𝛤 ⊢ e : C

𝛤 ⊢ e.f𝑖 : 𝜏𝑖
fields(C) = 𝜏1 f1; . . . 𝜏𝑛 f𝑛;
𝑖 ∈ 1..𝑛

(t-new)
𝛤 ⊢ e𝑖 : 𝜏𝑖 ∀𝑖 ∈ 1..𝑛

𝛤 ⊢ new C (e1, . . . , e𝑛) : C
fields(C) = 𝜏1 f1; . . . 𝜏𝑛 f𝑛;

(t-invk)
𝛤 ⊢ e0 : C 𝛤 ⊢ e𝑖 : 𝜏𝑖 ∀𝑖 ∈ 1..𝑛

𝛤 ⊢ e0.m(e1, . . . , e𝑛) : 𝜏
mtype(C,m) = 𝜏1 . . . 𝜏𝑛 → 𝜏

(t-block)
𝛤 ⊢ e : 𝜏 𝛤, x : 𝜏 ⊢ e′ : 𝜏 ′

𝛤 ⊢ {𝜏 x = e; e′} : 𝜏 ′

(t-env)
𝛤 ⊢ v𝑖 : 𝜏𝑖 ∀𝑖 ∈ 1..𝑛

𝛤 ⊢ 𝜌

𝛤 = x1 : 𝜏1, . . . , x𝑛 : 𝜏𝑛
𝜌 = x1 ↦→ v1, . . . , x𝑛 ↦→ v𝑛

(t-conf)
𝛤 ⊢ e : 𝜏 𝛤 ⊢ 𝜌

𝛤 ⊢ e |𝜌 : 𝜏

figure 3.2 Standard type system

• mtype(C,m) gives, for each methodm of class C, its parameter types and
return type

• ≤ is the reflexive and transitive closure of the extends relation

In a well-typed class table, we expect the following conditions to hold:

(t-meth) mtype(C,m) = 𝜏1 . . . 𝜏𝑛 → 𝜏 implies
mbody(C,m) = ⟨x1 . . . x𝑛, e⟩ and
this : C, x1 : 𝜏1, . . . , x𝑛 : 𝜏𝑛 ⊢ e : 𝜏

(t-inh-fields) C ≤ D implies fields(D) is a prefix of fields(C)
(t-inh-meth) C ≤ D and mtype(D,m) = 𝜏1 . . . 𝜏𝑛 → 𝜏 imply

mtype(C,m) = 𝜏1 . . . 𝜏𝑛 → 𝜏 ′

with 𝜏 ′ ≤ 𝜏

Condition (t-meth) expresses that method bodies should conform tomethod
types. Condition (t-inh-fields) expresses that fields are inherited, and, to-
gether with the assumption that they have distinct names, that there is no field
hiding. Finally, condition (t-inh-meth) expresses that methods are inherited,
cannot be overloaded, and can be overriden with a more specific return type.

Typing rules are shown in Figure 3.2 and are standard.

3.2 resource-aware semantics 19

3.2 Resource-aware semantics
This reduction uses grades, ranged over by 𝑟, 𝑠, 𝑡 , assumed to form a grade
algebra, specifying a partial order ⪯, a sum +, a multiplication ·, and constants
0 and 1, satisfying some axioms, as detailed in Definition 2.4.2 of Section 2.4.
We additionally assume that the grade algebra is affine, see Definition 2.4.8.

In order to keep track of usage of resources, parametrically on a given grade
algebra, we instrument reduction as follows.

• The environment associates, to each resource (variable), besides its value,
a grade modeling its allowed usage.

• Moroever, the reduction relation is graded, that is, indexed by a grade 𝑟 ,
meaning that it aims at producing a value to be used (at most) 𝑟 times, or, in
more general (non-quantitative) terms, to be used (at most) with grade 𝑟 .

• The grade of a variable in the environment decreases, each time the
variable is used, of the amount specified in the reduction grade2.

• Of course, this can only happen if the current grade of the variable can
be reduced of such an amount; otherwise the reduction is stuck.

Before giving the formal definition, we show some simple examples of re-
ductions, considering the (affine variant of the) grade algebra of naturals
Example 2.4.3(1), tracking how many times a resource is used.

example 3.2.1 : Assume the following classes:
class A {}
class Pair {A left; A right}

We write vPair as an abbreviation for new Pair(new A(),new A()).

{A a = [new A()]4; {Pair p = [new Pair(a,a)]2; new Pair(p.left,p.right)}} |∅ →1

{Pair p = [new Pair(a,a)]2; new Pair(p.left,p.right)} |a ↦→ ⟨new A(), 4⟩ →1

{Pair p = [new Pair(new A(),a)]2; new Pair(p.left,p.right)} |a ↦→ ⟨new A(), 2⟩ →1

{Pair p = [vPair]2; new Pair(p.left,p.right)} |a ↦→ ⟨new A(), 0⟩ →1

new Pair(p.left,p.right) |a ↦→ ⟨new A(), 0⟩,p ↦→ ⟨vPair, 2⟩ →1

new Pair(vPair.left,p.right) |a ↦→ ⟨new A(), 0⟩,p ↦→ ⟨vPair, 1⟩ →1

new Pair(new A(),p.right) |a ↦→ ⟨new A(), 0⟩,p ↦→ ⟨vPair, 1⟩ →1

new Pair(new A(), vPair.right) |a ↦→ ⟨new A(), 0⟩,p ↦→ ⟨vPair, 0⟩ →1

vPair |a ↦→ ⟨new A(), 0⟩,p ↦→ ⟨vPair, 0⟩

In the example, the top-level reduction is graded 1, meaning that a single
value is produced. Subterms are annotated with the grade of their reduction.
For instance, the outer initialization expression is annotated 4, meaning that
its result can be used (at most) 4 times. To lighten the notation, in this example
we omit the index 1. A local variable introduced in a block is added3 as another
2 More precisely, the reduction grade acts as a lower bound for this amount, see comment to
rule (var).

3 Modulo renaming to avoid clashes, omitted in the example for simplicity.

20 graded featherweight java

available resource in the environment, with the value and the grade of its
initialization expression; for instance, the outer local variable is added with
grade 4. When evaluating the inner initialization expression, which is reduced
with grade 2, each time the variable a is used its grade in the environment is
decremented by 2.

It is important to notice that the annotations in subterms are not type
annotations. Except those in arguments of constructor invocation, explained
below, annotations are only needed to ensure that reduction of a subterm
happens at each step with the same grade, see the formal definition below.
In Chapter 5 we will provide an instrumented semantics for a functional
calculus which is, instead, in big-step style, hence does not need this artifice.
In the example above, we have chosen for the reduction of subterms the
minimum grade allowing to perform the top-level reduction. We could have
chosen any greater grade; instead, with a strictly lower grade, the reduction
would be stuck.

As anticipated, in a constructor invocation new C([e1]𝑟1, . . . , [e𝑛]𝑟𝑛), the
annotation 𝑟𝑖 plays a special role: intuitively, it specifies that the object to be
constructed should contain 𝑟𝑖 copies of that field. Formally, this is reflected by
the reduction grade of the subterm e𝑖 , which must be exactly 𝑟 · 𝑟𝑖 , if 𝑟 is the
reduction grade of the object, specifying how many copies of it the reduction
is constructing. Correspondingly, an access to the field can be used (at most)
𝑟 · 𝑟𝑖 times. This is illustrated by the following variant of the previous example.

example 3.2.2 : Consider the term

{Aa= [new A()]4; {Pairp= [new Pair(a,a)]2;newPair([p.left]2 ,p.right)}}

As highlighted in grey, the first argument of the constructor invocation
which is the body of the inner block is now annotated with 2, meaning that the
resulting object should have “two copies” of the field. As a consequence, the
expression p.left should be reduced with grade 2, as shown below, where
vPair = new Pair(new A(),new A()), the first four reduction steps are
as in Example 3.2.1 and we explicitly write some annotations 1 for clarity

{A a = [new A()]4; {Pair p = [new Pair([a]1,a)]2; new Pair([[p]1.left]2 ,p.right)}} |∅ →∗
1

new Pair([[p]1.left]2 ,p.right) |a ↦→ ⟨new A(), 0⟩,p ↦→ ⟨vPair, 2⟩ →1

new Pair([[vPair]1.left]2 ,p.right) |a ↦→ ⟨new A(), 0⟩,p ↦→ ⟨vPair, 1⟩ STUCK

Reduction of the subterm in grey, aiming at constructing a value (new A())
which can be used twice, is stuck, since we cannot obtain two copies of
new A() from the field left of the object vPair. If we choose, instead, to
reduce the occurrence of p to be used twice, then we get the following reduc-
tion, where again we omit steps which are as before:

{A a = [new A()]4; {Pair p = [new Pair([a]1,a)]2; new Pair([[p]2.left]2 ,p.right)}} |∅ →★
1

3.2 resource-aware semantics 21

new Pair([[p]2.left]2 ,p.right) |a ↦→ ⟨new A(), 0⟩,p ↦→ ⟨vPair, 2⟩ →1

new Pair([[vPair]2.left]2 ,p.right) |a ↦→ ⟨new A(), 0⟩,p ↦→ ⟨vPair, 0⟩ →1

new Pair([new A()]2,p.right) |a ↦→ ⟨new A(), 0⟩,p ↦→ ⟨vPair, 0⟩ STUCK

In this case, the reduction is stuck since we consumed all the available
copies of p to produce two copies of the field left, so now we cannot reduce
p.right. To obtain a non-stuck reduction, we should choose to reduce the
initialization expression of p with index 3, hence that of a with index 6. To
complete the construction of the Pair, that is, to get a non-stuck reduction,
we should have 3 copies of p and therefore 6 copies of a.

The formal definition of the instrumented semantics is given in Figure 3.3.
To make the notation lighter, we use the same metavariables of the standard
semantics in Figure 3.1. As explained above, reduction is defined on annotated
terms. Notably, in each construct, the subtermswhich are reduced in contextual
rules are annotated, so that their reduction always happens with a fixed grade.

In rule (var), which is the key rule where resources are consumed, a variable
occurrence is replaced by the associated value in the environment, and its
grade 𝑠 decreases to 𝑠′, burning a non-zero amount 𝑟 ′ of resources which has
to be at least the reduction grade. The side condition 𝑟 ′ + 𝑠′ ⪯ 𝑠 ensures that
the initial grade of the variable suffices to cover both the consumed grade and
the residual grade. To show why the amount of resource consumption should
be non-zero, consider, e.g., the following variant of Example 3.2.1:

{A a = [new A()]4; {Pair p = [new Pair(a,a)]0; new Pair(a,a)}}|∅

The local variable p is never used in the body of the block, so it makes sense
for its initialization expression to be reduced with grade 0, since execution
needs no copies of the result. Yet, the expression needs to be reduced, and
to produce its useless result two copies of a are consumed; in a sense, they
are wasted. However, the resource usage is tracked, whereas it would be lost
if decrementing by 0. Removing the non-zero requirement would lead to a
variant of resource-aware reduction where usage of resource which are useless
to construct the final result is not tracked.

In rule (field-access), the reduction grade should be (overapproximated by)
the multiplication of the grade of the receiver with that of the field (constructor
argument). Indeed, the former specifies how many copies of the object we
have and the latter how many copies of the field each of such objects has; thus,
their product provides an upper bound to the grade of the resulting value.
Note that, in this way, some reductions could be forbidden. For instance, taking
the (affine) grade algebra of naturals, an access to a field whose value can be
used 3 times, of an object reduced with grade 2, can be reduced with grade (at
most) 6. Another more significant example is given in the following, taking
the grade algebra of privacy levels.
Rule (invk) adds each method parameter, including this, as available

resource in the environment, modulo renaming with a fresh variable to avoid
clashes. The associated value and grade are that of the corresponding argument.
Rule (block) is exactly analogous, apart that only one variable is added.

22 graded featherweight java

e ::= x | [e]𝑟.f | new C([e1]𝑟1, . . . , [e𝑛]𝑟𝑛) | annotated expression
| [e0]𝑟0.m([e1]𝑟1, . . . , [e𝑛]𝑟𝑛) | {𝜏 x = [e]𝑟; e′}

v ::= new C([v1]𝑟1, . . . , [v𝑛]𝑟𝑛) annotated value
𝜌 ::= x1 ↦→ ⟨v1, 𝑟1⟩, . . . , x𝑛 ↦→ ⟨v𝑛, 𝑟𝑛⟩ environment

(var)
x |𝜌, x ↦→ ⟨v, 𝑠⟩ →𝑟 v |𝜌, x ↦→ ⟨v, 𝑠′⟩

𝑟 ⪯ 𝑟 ′ ≠ 0
𝑠′ + 𝑟 ′ ⪯ 𝑠

(field-access) [new C([v1]𝑠1 , . . . , [v𝑛]𝑠𝑛)]𝑠.f𝑖 |𝜌 →𝑟 v𝑖 |𝜌

fields(C) = 𝜏1 f1; . . . 𝜏𝑛 f𝑛;
𝑖 ∈ 1..𝑛
𝑟 ⪯ 𝑠 · 𝑠𝑖

(invk)
[v0]𝑠0.m([v1]𝑠1 , . . . , [v𝑛]𝑠𝑛)|𝜌 →𝑟

e[y0/this] [y1/x1 . . . y𝑛/x𝑛] |𝜌 ′

v0 = new C(_)
mbody(C,m) = ⟨x1 . . . x𝑛, e⟩
y0, . . . , y𝑛 ∉ dom(𝜌)
𝜌 ′ = 𝜌, y0 ↦→ ⟨v0, 𝑠0⟩, . . . , y𝑛 ↦→ ⟨v𝑛, 𝑠𝑛⟩

(block) {𝜏 x = [v]𝑠; e}|𝜌 →𝑟 e[y/x] |𝜌, y ↦→ ⟨v, 𝑠⟩ y ∉ dom(𝜌)

(field-access-ctx)
e |𝜌 →𝑠 e′ |𝜌 ′

[e]𝑠.f |𝜌 →𝑟 [e′]𝑠.f |𝜌 ′

(new-ctx)
e𝑖 |𝜌 →𝑟 ·𝑟𝑖 e

′
𝑖 |𝜌 ′

new C([v1]𝑟1 , . . . , [v𝑖−1]𝑟𝑖−1 , [e𝑖]𝑟𝑖 , . . . , [e𝑛]𝑟𝑛)|𝜌 →𝑟

new C([v1]𝑟1 , . . . , [v𝑖−1]𝑟𝑖−1 , [e′𝑖]𝑟𝑖 , . . . , [e𝑛]𝑟𝑛)|𝜌
′

(invk-rcv-ctx)
e0 |𝜌 →𝑟0 e

′
0 |𝜌 ′

[e0]𝑟0.m([e1]𝑟1 , . . . , [e𝑛]𝑟𝑛)|𝜌 →𝑟 [e′0]𝑟0.m([e1]𝑟1 , . . . , [e𝑛]𝑟𝑛)|𝜌
′

(invk-arg-ctx)
e𝑖 |𝜌 →𝑟𝑖 e

′
𝑖 |𝜌 ′

[e0]𝑟0.m([v1]𝑟1 , . . . , [v𝑖−1]𝑟𝑖−1 , [e𝑖]𝑟𝑖 , . . . , [e𝑛]𝑟𝑛)|𝜌 →𝑟

[e0]𝑟0.m([v1]𝑟1 , . . . , [v𝑖−1]𝑟𝑖−1 , [e′𝑖]𝑟𝑖 , . . . , [e𝑛]𝑟𝑛)|𝜌
′

(block-ctx)
e1 |𝜌 →𝑠 e′1 |𝜌 ′

{𝜏 x = [e1]𝑠; e2}|𝜌 →𝑟 {𝜏 x = [e′1]𝑠; e2}|𝜌 ′

figure 3.3 Instrumented (small-step) reduction

3.2 resource-aware semantics 23

Coming to contextual rules, the reduction grade of the subterm is that of
the corresponding annotation, so that all steps happen with a fixed grade. The
only exception is rule (new-ctx), where, symmetrically to rule (field-access),
the reduction grade for subterms should be the multiplication of the reduction
grade of the object with the annotation of the field (constructor argument),
capturing the intuition that the latter specifies the grade of the field for a single
copy of the object. For instance, taking the grade algebra of naturals, to obtain
an object which can be used twice, with a field which can be used 3 times, the
value of the field should be an object which can be used 6 times.

Note that, besides the standard typing errors such as looking for a missing
method or field, reduction graded 𝑟 can get stuck when either rule (var) or
rule (field-access) cannot be applied since the side condition does not hold.
Informally, either some resource (variable) is exhausted, that is, can no longer
be replaced by its value, or some field of some object cannot be extracted. It is
also important to note that the instrumented reduction is non-deterministic,
due to rule (var).

In the grade algebra used in the previous example, grades model how many
times resources are used. However, grades can also model a non-quantitative4
information, that is, track possible modes in which a resource can be used, or,
in other words, possible constraints on how it could be used. A typical example
of this situation are privacy levels, which can be formalized similarly to what
is done by Abel and Bernardy [2], as described below.

example 3.2.3 : Starting from any distributive lattice L, like in Example 2.4.3(5),
define L0 = ⟨|L0 |, ≤0,∨0,∧0, 0,⊤⟩, where |L0 | = |L| + {0} with 0 ≤0 𝑥 , 𝑥 ∨0 0 =

0 ∨0 𝑥 = 𝑥 and 𝑥 ∧0 0 = 0 ∧0 𝑥 = 0, for all 𝑥 ∈ |L|; on elements of |L| the order
and the operations are those of L. That is, we assume that the privacy levels
form a distributive semilattice with order representing “decreasing privacy”,
and we add a grade 0 modeling “non-used”. The simplest instance consists of
just two privacy levels, that is, 0 ⪯ priv ⪯ pub. Sum is the join, meaning that
we obtain a privacy level which is less restrictive than both: for instance, a
variable which is used as pub in a subterm, and as priv in another, is overall
used as pub. Multiplication is the meet, meaning that we obtain a privacy level
which is more restrictive than both: for instance, an access to a field whose
value has been obtained in public mode, of an object reduced in private
mode, is reduced in private mode5. Note that exactly the same structure
could be used to model, rather than privacy levels, the modifiers read and
mutable in an imperative setting, corresponding to forbid field assignment
and no restrictions, respectively. The following examples illustrates the use of
this grade algebra. Classes A and Pair are as in the previous examples.

1. Let e1 = {A y = [new A()]pub; {A x = [y]priv; x}} and p_ be either pub
or priv, e1 starting with the empty environment reduces with grade priv

4 These applications are called informational by Abel and Bernardy [2].
5 As in viewpoint adaptation by Dietl, Drossopoulou, and Müller [28], where permission to a
field access can be restricted based on the permission to the base object.

24 graded featherweight java

as follows:

e1 |∅ →priv {A x = [y]priv; x}|y ↦→ ⟨new A(), pub⟩ with (block)
→priv {A x = [new A()]priv; x}|y ↦→ ⟨new A(), p_⟩ with (block-ctx) and
y|y ↦→ ⟨new A(), pub⟩ →priv new A()|y ↦→ ⟨new A(), p_⟩
→priv x|y ↦→ ⟨new A(), p_⟩,x ↦→ ⟨new A(), priv⟩ with (block)
→priv new A()|y ↦→ ⟨new A(), p_⟩,x ↦→ ⟨new A(), priv⟩ with (var)

Instead reduction with grade pub would be stuck since pub ̸⪯ priv:

x|y ↦→ ⟨new A(), p_⟩,x ↦→ ⟨new A(), priv⟩ ̸→pub

Also the reduction of e2 = {A y = [new A()]priv; {A x = [y]pub; x}}
with grade priv

e2 |∅ →priv {A x = [y]pub; x}|y ↦→ ⟨new A(), priv⟩ with (Block)
̸→priv

would be stuck since y|y ↦→ ⟨new A(), priv⟩ ̸→pub. Note that both e1
and e2 reduce to new A() with the semantics of Figure 3.1.

2. Let 𝑒3 = {A x = [new A()]pub; new B([x]pub, [x]priv)}, e3 starting with
the empty environment reduces with grade pub as follows:

e3 |∅ →pub new B([x]pub, [x]priv)|x ↦→ ⟨new A(), pub⟩ with (Block)
→pub new B([new A()]pub, [x]priv)|x ↦→ ⟨new A(), p_⟩

with (New-Ctx) and x|x ↦→ ⟨new A(), pub⟩ →pub new A()|x ↦→ ⟨new A(), p_⟩
→pub new B([new A()]pub, [new A()]priv)|x ↦→ ⟨new A(), p_⟩

with (New-Ctx) and x|x ↦→ ⟨new A(), p_⟩ →priv new A()|x ↦→ ⟨new A(), p_⟩

It is easy to see that also

e3 |∅ →∗
priv new B([new A()]pub, [new A()]priv)|x ↦→ ⟨new A(), p_⟩

So we have

[e3]𝑟.f |∅ →∗
𝑠 [new B([new A()]pub, [new A()]priv)]𝑟.f |x ↦→ ⟨new A(), p_⟩

where f can be either left or right and 𝑟 and 𝑠 can be either pub or
priv. Now, the reductions of grade priv accessing either left or right
produce the value of the fields

[new B([new A()]pub, [new A()]priv)]𝑟.f |_ →priv new A()|_

However, looking at the reductions of grade pub, only

[new B([new A()]pub, [new A()]priv)]pub.left|_ →pub new A()|_

is not stuck. That is, we produce a value that can be used as pub only if
we get a pub field of a pub object, whereas any value can be used as priv.

We now state some simple properties of the semantics we will use to prove
type soundness. The former establishes that reduction does not remove vari-
ables from the environment, the latter states that we can always decrease the
grade of a reduction step.

proposition 3.2.4 : If e |𝜌 →𝑟 e′ |𝜌 ′ then dom(𝜌) ⊆ dom(𝜌 ′) and, for all
x ∈ dom(𝜌), 𝜌 (x) = ⟨v, 𝑟 ⟩ implies 𝜌 ′(x) = ⟨v, 𝑠⟩ with 𝑠 ⪯ 𝑟 .

3.3 resource-aware type system 25

proposition 3.2.5 : If e |𝜌 →𝑟 e′ |𝜌 ′ and 𝑠 ⪯ 𝑟 then e |𝜌 →𝑠 e′ |𝜌 ′.

We expect the instrumented reduction to be sound with respect to the stand-
ard reduction, in the sense that by erasing annotations from an instrumented
reduction sequence we get a standard reduction sequence. This is formally
stated below.

For any e expression, let us denote by ⌈e⌉ the expression obtained by erasing
annotations, defined in the obvious way, and analogously for environments,
where grades associated to variables are removed as well.

proposition 3.2.6 (Soundness of instrumented semantics): If e |𝜌 →𝑟

e′ |𝜌 ′ then ⌈e⌉ | ⌈𝜌⌉ → ⌈e′⌉ | ⌈𝜌 ′⌉.

The converse does not hold, since a configuration could be annotated in a
way that makes it stuck; notably, some resource (variable) could be exhausted
or some field of an object could not be extracted. The graded type system in
the next section will generate annotations which ensure soundness, hence also
completeness with respect to the standard reduction.

3.3 Resource-aware type system
Types (class names) are annotated with grades, as shown in Figure 3.4.

As anticipated at the end of Section 2.4, a coeffect context, of the shape
𝛾 = x1 : 𝑟1, . . . , x𝑛 : 𝑟𝑛 , where order is immaterial and x𝑖 ≠ x𝑗 for 𝑖 ≠ 𝑗 , rep-
resents a map from variables to grades (called coeffects when used in this
position) where only a finite number of variables have non-zero coeffect. A
(type-and-coeffect) context, of shape 𝛤 = x1 :𝑟1 𝜏1, . . . , x𝑛 :𝑟𝑛 𝜏𝑛 , with analogous
conventions, represents the pair of the standard type context x1 : 𝜏1, . . . , x𝑛 : 𝜏𝑛 ,
and the coeffect context x1 : 𝑟1, . . . , x𝑛 : 𝑟𝑛 . We write dom(𝛤) for {x1, . . . , x𝑛}.
As customary in type-and-coeffect systems, in typing rules contexts are com-
bined by means of some operations, which are, in turn, defined in terms of the
corresponding operations on coeffects (grades). More precisely, we define:

• a partial order ⪯

∅ ⪯ ∅
x :𝑠 𝜏, 𝛤 ⪯ x :𝑟 𝜏, 𝛥 if 𝑠 ⪯ 𝑟 and 𝛤 ⪯ 𝛥

𝛤 ⪯ x :𝑟 𝜏, 𝛥 if x ∉ dom(𝛤) and 𝛤 ⪯ 𝛥

• a sum +

∅ + 𝛤 = 𝛤

(x :𝑠 𝜏, 𝛤) + (x :𝑟 𝜏, 𝛥) = x :𝑠+𝑟 𝜏 (𝛤 + 𝛥)
(x :𝑠 𝜏, 𝛤) + 𝛥 = x :𝑠 𝜏, (𝛤 + 𝛥) if x ∉ dom(𝛥)

• a scalar multiplication ·

𝑠 · ∅ = ∅ 𝑠 · (x :𝑟 𝜏, 𝛤) = x :𝑠 ·𝑟 𝜏, (𝑠 ·𝛤)

26 graded featherweight java

e ::= x | e.f | new C(es) | e.m(es) | expression
| {T x = e; e′}

𝜎, 𝜏 ::= C non-graded type (class name)
S, T ::= 𝜏𝑟 graded type
𝛤, 𝛥 ::= x1 :𝑟1 𝜏1, . . . , x𝑛 :𝑟𝑛 𝜏𝑛 (type-and-coeffect) context

figure 3.4 Syntax with grades, types, and (type-and-coeffect) contexts

As the reader may notice, these operations on (type-and-coeffect) contexts
can be equivalently defined by lifting the corresponding operations on coeffect
contexts, which are the pointwise extension of those on coeffects, to handle
types as well. In this step, the sum becomes partial since a variable in the
domain of both contexts is required to have the same type.

Type information extracted from the class table is abstractly modeled as at
page 16, apart that:

• fields(C) gives a sequence 𝜏𝑟11 f1; . . . 𝜏
𝑟𝑛
𝑛 f𝑛;, meaning that, to construct

an object of type C, we need to provide, for each 𝑖 ∈ 1..𝑛, a value with a
grade at least 𝑟𝑖

• mtype(C,m) gives, for each method m of class C, its enriched method
type, where the types of the parameters and of this have grade annota-
tions

The subtyping relation on graded types is defined as follows:

C𝑟 ≤ D𝑠 iff C ≤ D and 𝑠 ⪯ 𝑟

That is, a graded type is a subtype of another if the class is a heir class and the
grade is more constraining. For instance, taking the affinity grade algebra of
Example 2.4.3(2), an invocation of a method with return type 𝜏∞ can be used
in a context where a type 𝜏1 is required, e.g., to initialize a 𝜏1 variable.
The conditions on the well-formedness of the class table are adapted as

follows:

(t-meth) mtype(C,m) = 𝑟0, 𝜏
𝑟1
1 . . . 𝜏

𝑟𝑛
𝑛 → T implies

mbody(C,m) = ⟨x1 . . . x𝑛, e⟩ and
this :𝑟0 C, x1 :𝑟1 𝜏1, . . . , x𝑛 :𝑟𝑛 𝜏𝑛 ⊢ e : T

(t-inh-fields) C ≤ D implies fields(D) is a prefix of fields(C)
(t-inh-meth) C ≤ D and mtype(D,m) = 𝑟0, 𝜏

𝑟1
1 . . . 𝜏

𝑟𝑛
𝑛 → T imply

mtype(C,m) = 𝑠0, 𝜏
𝑠1
1 . . . 𝜏

𝑠𝑛
𝑛 → S

with S ≤ T , 𝑠𝑖 ⪯ 𝑟𝑖 for 𝑖 ∈ 0..𝑛

In Figure 3.5, we describe the typing rules, which are parameterized on the
underlying grade algebra.

In rule (t-sub), both the coeffect context and the (graded) type can be made
more general. This means that, on one hand, variables can get less constraining
coeffects. For instance, assuming again affinity coeffects, an expression which

3.3 resource-aware type system 27

(t-sub)
𝛤 ⊢ e : T
𝛤 ′ ⊢ e : T ′

𝛤 ⪯ 𝛤 ′

T ≤ T ′ (t-var)
x :𝑟 𝜏 ⊢ x : 𝜏𝑟

𝑟 ≠ 0

(t-field-access)
𝛤 ⊢ e : C𝑟

𝛤 ⊢ e.f𝑖 : 𝜏𝑟 ·𝑟𝑖𝑖

fields(C) = 𝜏
𝑟1
1 f1; . . . 𝜏

𝑟𝑛
𝑛 f𝑛;

𝑖 ∈ 1..𝑛

(t-new)
𝛤𝑖 ⊢ e𝑖 : 𝜏𝑟 ·𝑟𝑖𝑖

∀𝑖 ∈ 1..𝑛
𝛤1 + . . . + 𝛤𝑛 ⊢ new C (e1, . . . , e𝑛) : C𝑟

fields(C) = 𝜏
𝑟1
1 f1; . . . 𝜏

𝑟𝑛
𝑛 f𝑛;

(t-invk)
𝛤0 ⊢ e0 : C𝑟00 𝛤𝑖 ⊢ e𝑖 : 𝜏𝑟𝑖𝑖 ∀𝑖 ∈ 1..𝑛
𝛤0 + . . . + 𝛤𝑛 ⊢ e0.m(e1, . . . , e𝑛) : T

mtype(C,m) = 𝑟0, 𝜏
𝑟1
1 . . . 𝜏

𝑟𝑛
𝑛 → T

(t-block)
𝛤 ⊢ e : 𝜏𝑟 𝛤 ′, x :𝑟 𝜏 ⊢ e : T
𝛤 + 𝛤 ′ ⊢ {𝜏𝑟 x = e; e′} : T

(t-env)
⊢ v𝑖 : 𝜏𝑟𝑖𝑖 ∀𝑖 ∈ 1..𝑛

𝛤 ⊢ 𝜌

𝛤 = x1 :𝑟1 𝜏1, . . . , x𝑛 :𝑟𝑛 𝜏𝑛

𝜌 = x1 ↦→ ⟨v1, 𝑟1⟩, . . . , x𝑛 ↦→ ⟨v𝑛, 𝑟𝑛⟩

(t-conf)
𝛥 ⊢ e : T 𝛤 ⊢ 𝜌

𝛤 ⊢ e |𝜌 : T
𝛥 ⪯ 𝛤

figure 3.5 Graded type system

28 graded featherweight java

can be typechecked assuming to use a given variable at most once (coeffect 1)
can be typechecked as well with no constraints (coeffect ∞). On the other
hand, recalling that grades are contravariant in types, an expression can get a
more constraining grade. For instance, an expression of grade ∞ can be used
where a grade 1 is required.

If we take 𝑟 = 1, then rule (t-var) is analogous to the standard rule for
variable in coeffect systems, where the coeffect context is the map where the
given variable is used once, and no other is used. Here, more generally, the
variable can get an arbitrary grade 𝑟 , provided that it gets the same grade in
the context. In other words, as anticipated in Section 2.3, a “local” promotion is
applied. However, the use of the variable cannot be just discarded, as expressed
by the side condition 𝑟 ≠ 0.

In rule (t-field-access), the grade of the field is multiplied by the grade of
the receiver. As already mentioned, this is a form of viewpoint adaptation [28].

In rule (t-new), analogously to rule (t-var), the constructor invocation can
get an arbitrary grade 𝑟 , provided that the grades of the fields are multiplied
by the same grade. Coeffects of the subterms are summed, as customary in
type-and-coeffect systems.

In rule (t-invk), the coeffects of the arguments are summed as well. The rule
uses the function mtype on the class table, which, given a class name and a
method name, returns its parameter and return (graded) types. For the implicit
parameter this only the grade is specified. Note that the grades of the para-
meters are used in two different ways: as (part of) types, when typechecking
the arguments; as coeffects, when typechecking the method body.

In rule (t-block), the coeffects of the initialization expression are summed
with those of the body, excluding the local variable. Analogously to method
parameters, the grade of the local variable is both used as (part of) type, when
typechecking the initialization expression, and as coeffect, when typechecking
the body.

Finally, we have straightforward rules for typing environments and config-
urations. Values in the environment are assumed to be closed, since we are in
a call-by-value calculus. Also note that, in the judgment for environments and
configurations, since no subsumption rule is available, variables in the context
are exactly those in the domain of the environment, which are a superset of
those used in the expression.

In order to state and prove resource-aware soundness, the typing judgment
can be enriched to have shape 𝛤 ⊢ e : T ⇝ e′, where e′ is an annotated ex-
pression, as defined in Figure 3.3. That is, typechecking generates annotations
in code such that there is a reduction which does not get stuck, as will be
formally expressed in the following. This judgment is defined in Figure 3.6.

example 3.3.1 : We show a simple example illustrating the use of graded
types, assuming affinity grades. We write in square brackets the grade of the
implicit this parameter. The class Pair declares three versions of the getter
for the left field, which differ for the grade of the result: either 0, meaning
that the result of the method cannot be used, or 1, meaning it can be used at

3.3 resource-aware type system 29

(t-sub)
𝛤 ⊢ e : T ⇝ e′

𝛤 ′ ⊢ e : T ′ ⇝ e′
𝛤 ⪯ 𝛤 ′

T ≤ T ′ (t-var)
x :𝜏 𝑟 ⊢ x : 𝜏𝑟 ⇝ x

𝑟 ≠ 0

(t-field-access)
𝛤 ⊢ e : C𝑟 ⇝ e′

𝛤 ⊢ e.f𝑖 : 𝜏𝑟 ·𝑟𝑖𝑖
⇝ [e′]𝑟.f𝑖

fields(C) = 𝜏
𝑟1
1 f1; . . . 𝜏

𝑟𝑛
𝑛 f𝑛;

𝑖 ∈ 1..𝑛

(t-new)
𝛤𝑖 ⊢ e𝑖 : 𝜏𝑟 ·𝑟𝑖𝑖

⇝ e′𝑖 ∀𝑖 ∈ 1..𝑛
𝛤1 + . . . + 𝛤𝑛 ⊢ new C (e1, . . . , e𝑛) : C𝑟 ⇝

new C([e′1]𝑟1 , . . . , [e
′
𝑛]𝑟𝑛)

fields(C) = 𝜏
𝑟1
1 f1; . . . 𝜏

𝑟𝑛
𝑛 f𝑛;

(t-invk)

𝛤0 ⊢ e0 : C𝑟0 ⇝ e′0
𝛤𝑖 ⊢ e𝑖 : 𝜏𝑟𝑖𝑖 ⇝ e′𝑖 ∀𝑖 ∈ 1..𝑛

𝛤0+ . . . + 𝛤𝑛 ⊢ e0 .m(e1, . . . , e𝑛) : T ⇝
[e′0]𝑟0.m([e1]𝑟1 , . . . , [e𝑛]𝑟𝑛)

mtype(C,m) = 𝑟0, 𝜏
𝑟1
1 . . . 𝜏

𝑟𝑛
𝑛 → T

(t-block)
𝛤1 ⊢ e1 : 𝜏𝑟 ⇝ e′1 𝛤2, x :𝑟 𝜏 ⊢ e2 : T ⇝ e′2

𝛤1 + 𝛤2 ⊢ {𝜏𝑟 x = e1; e2} : T ⇝ {𝜏 x = [e′1]𝑟; e′2}

(t-env)
⊢ v𝑖 : 𝜏𝑟𝑖𝑖 ⇝ v′𝑖 ∀𝑖 ∈ 1..𝑛

𝛤 ⊢ 𝜌 ⇝ 𝜌 ′

𝛤 = x1 :𝑟1 𝜏1, . . . , x𝑛 :𝑟𝑛 𝜏𝑛
𝜌 = x1 ↦→ ⟨v1, 𝑟1⟩, . . . , x𝑛 ↦→ ⟨v𝑛, 𝑟𝑛⟩
𝜌 ′ = x1 ↦→ ⟨v′1, 𝑟1⟩, . . . , x𝑛 ↦→ ⟨v′𝑛, 𝑟𝑛⟩

(t-conf)
𝛥 ⊢ e : T ⇝ e′ 𝛤 ⊢ 𝜌 ⇝ 𝜌 ′

𝛤 ⊢ e |𝜌 : T ⇝ e′ |𝜌 ′ 𝛥 ⪯ 𝛤

figure 3.6 Type system generating annotations

30 graded featherweight java

most once, or ∞, meaning it can be used with no constraints. Note that the
first version, clearly useless in a functional calculus, could make sense adding
effects, e.g. in an imperative calculus, playing a role similar to that of void.

class Pair { A1 left; A1 right;
A0 getLeftZero() [1]{this.left}
A1 getLeftAffine() [1]{this.left}
A∞ getLeft() [∞]{this.left}

}

The coeffect of this is 1 in the first two versions, and it is actually used once
in the bodies. In the third method, the coeffect needs to be ∞ since the result
has the∞ grade. Fields are graded 1, meaning that a field access does not affect
the grade of the receiver.

In the client code below, a call of the getter is assigned to a local variable of
the same grade, which is then used consistently with its grade.

Pair∞ p = ...

{A0 a = p.getLeftZero(); new Pair(new A(),new A())}
{A1 a = p.getLeftAffine(); new Pair(a,new A())}
{A∞ a = p.getLeft(); new Pair(a,a)}

The following blocks are, instead, ill-typed, for two different reasons.

{A1 a = p.getLeft(); new Pair(a,a)}
{A∞ a = p.getLeftAffine(); new Pair(a,a)}

In the first one, the initialization is correct, by subsumption, since we use an
expression of a less constrained grade. However, the variable is then used in a
way which is not compatible with its grade. In the second one, instead, the
variable is used consistently with its grade, but the initialization is ill-typed,
since we use an expression of a more constrained grade.
Finally, note that the coeffect of this could be safely changed to be∞ in

the first two methods as well, providing an overapproximated information.

example 3.3.2 : Consider the following source (that is, a non-annotated)
version of the expression e1 of Example 3.2.3.

{Apub y = new A(); {Apriv x = y; x}}

The priv variable x is initialized with the pub expression/variable y. The block
expression has type Apriv as the following type derivation shows.

(t-block)

(t-new)
⊢ new A() : Apub

D

⊢ {Apub y = new A(); {Apriv x = y; x}} : Apriv

where D is the following derivation

(t-block)

(t-sub)

(t-var)
y :pub A ⊢ y : Apub

y :pub A ⊢ y : Apriv
(t-var)

y :pub A,x :priv A ⊢ x : Apriv

y :pub A ⊢ {Apriv x = y; x} : Apriv

On the other hand, initializing a pub variable with a priv expression as in

3.4 resource-aware soundness 31

{Apriv y = new A(); {Apub x = y; x}}

is not possible, as expected, since y :A priv ⊬ y : Apub .
Consider now the class B with a priv field and a pub one.

class B { Apub f1; Apriv f2; }

The expression e

{Apub x = new A(); new B(x,x)}

can be given type Bpub as follows:

(t-new)
⊢ new A() : Apub

(t-var)
x :pub A ⊢ x : Apub

(t-var)
x :pub A ⊢ x : Apub

(t-sub)
x :pub A ⊢ x : Apriv

(t-new)
x :pub A ⊢ new B(x,x) : Bpub

(t-block)
⊢ {Apub x = new A(); new B(x,x)} : Bpub

By (t-sub) we can also derive ⊢ e : Bpriv and so we get

⊢ e : Bpriv
(t-field)

⊢ e.left : Apriv
⊢ e : Bpub

(t-field)
⊢ e.right : Apriv

that is, accessing a pub field of a priv expression we get a priv result as well as
accessing a priv field of a pub expression.
Also note that the following expression e′

{Apriv x = new A(); new B(x,x)}

can be given only type Bpriv by

(t-new)
⊢ new A() : Apriv

(t-var)
x :priv A ⊢ x : Apriv

(t-var)
x :priv A ⊢ x : Apriv

(t-new)
x :priv A ⊢ new B(x,x) : Bpriv

(t-block)
⊢ {Apriv x = new A(); new B(x,x)} : Bpriv

We cannot derive ⊢ e′ : Bpub, since the grade of left is pub and (t-new)
would require x :A priv ⊢ x : Apub·pub, which does not hold.

3.4 Resource-aware soundness

We state that the graded type system is sound with respect to the resource-
aware semantics. In other words, the graded type system prevents both stand-
ard typing errors, such as invoking a missing field or method, and resource-
usage errors, such as requiring a resource which is exhausted (cannot be used
in the needed way).

32 graded featherweight java

(t-sub)
𝛤 ⊢𝑎 e : T
𝛤 ′ ⊢𝑎 e : T ′

𝛤 ⪯ 𝛤 ′

T ≤ T ′ (t-var)
x :𝑟 𝜏 ⊢𝑎 x : 𝜏𝑟

𝑟 ≠ 0

(t-field-access)
𝛤 ⊢𝑎 e : C𝑟

𝛤 ⊢𝑎 [e]𝑟.f𝑖 : 𝜏𝑟 ·𝑟𝑖𝑖

fields(C) = 𝜏
𝑟1
1 f1; . . . 𝜏

𝑟𝑛
𝑛 f𝑛;

𝑖 ∈ 1..𝑛

(t-new)
𝛤𝑖 ⊢𝑎 e𝑖 : 𝜏𝑟 ·𝑟𝑖𝑖

∀𝑖 ∈ 1..𝑛
𝛤1 + . . . + 𝛤𝑛 ⊢𝑎 new C([e1]𝑟1 , . . . , [e𝑛]𝑟𝑛) : C𝑟

fields(C) = 𝜏
𝑟1
1 f1; . . . 𝜏

𝑟𝑛
𝑛 f𝑛;

(t-invk)
𝛤0 ⊢𝑎 e0 : C𝑟0 𝛤𝑖 ⊢𝑎 e𝑖 : 𝜏𝑟𝑖𝑖 ∀𝑖 ∈ 1..𝑛

𝛤0 + . . . + 𝛤𝑛 ⊢𝑎 [e0]𝑟0.m([e1]𝑟1 , . . . , [e𝑛]𝑟𝑛) : T
mtype(C,m) = 𝑟0, 𝜏

𝑟1
1 . . . 𝜏

𝑟𝑛
𝑛 → T

(t-block)
𝛤 ⊢𝑎 e : 𝜏𝑟 𝛤 ′, x :𝑟 𝜏 ⊢𝑎 e′ : T
𝛤 + 𝛤 ′ ⊢𝑎 {𝜏 x = [e]𝑟; e′} : T

(t-env)
⊢𝑎 v𝑖 : 𝜏𝑟𝑖𝑖 ∀𝑖 ∈ 1..𝑛

𝛤 ⊢𝑎 𝜌

𝛤 = x1 :𝑟1 𝜏1, . . . , x𝑛 :𝑟𝑛 𝜏𝑛
𝜌 = x1 ↦→ ⟨v1, 𝑟1⟩, . . . , x𝑛 ↦→ ⟨v𝑛, 𝑟𝑛⟩

(t-conf)
𝛥 ⊢𝑎 e : T 𝛤 ⊢𝑎 𝜌

𝛤 ⊢𝑎 e |𝜌 : T
𝛥 ⪯ 𝛤

figure 3.7 Type system for annotated syntax

In order to state and prove a soundness theorem, we need to introduce a
(straightforward) typing judgment ⊢𝑎 for annotated expressions, environments
and configurations. The typing rules are reported in Figure 3.7.

Recall that ⌈_⌉ denotes erasing annotations. It is easy to see that an annotated
expression is well-typed if and only if it is produced by the type system:

proposition 3.4.1 : 𝛤 ⊢ e : T ⇝ e′ if and only if ⌈e′⌉ = e and 𝛤 ⊢𝑎 e′ : T .

A similar property holds for environments and configurations.
The main result is the following progress/subject reduction theorem.

theorem 3.4.2 (Progress/Subject reduction): If 𝛤 ⊢𝑎 e |𝜌 : 𝜏𝑟 then either e
is a value or e |𝜌 →𝑟 e′ |𝜌 ′ and 𝛤 ′ ⊢𝑎 e′ |𝜌 ′ : 𝜏𝑟 with dom(𝛤) ⊆ dom(𝛤 ′) and
𝛤 ′ ⪯ 𝛤, 𝛥.

When reduction is non-deterministic, we can distinguish two flavours of
soundness, soundness-must meaning that no computation can be stuck, and
soundness-may, meaning that at least one computation is not stuck. The termin-
ology ofmay andmust properties is very general and comes originally from De
Nicola and Hennessy [27]; the specific names soundness-may and soundness-
must were introduced in [23, 25] in the context of big-step semantics. In our
case, graded reduction is non-deterministic since, as discussed before, the rule
(var) could be instantiated in different ways, possibly consuming the resource
more than necessary. However, we expect that, for a well-typed configuration,
there is at least one computation which is not stuck, hence a soundness-may
result. Soundness-may can be proved by a theorem like the one above, which

3.4 resource-aware soundness 33

can be seen as a subject-reduction-may result, including standard progress. In
our case, if the configuration is well-typed, that is, annotations have been gen-
erated by the type system, there is a step which leads, in turn, to a well-typed
configuration. More in detail, the type is preserved, resources initially available
may have reduced grades, and other available resources may be added.
To prove this result, we need some standard lemmas.

lemma 3.4.3 (Environment typing): The following facts hold

1. If 𝛤 ⊢𝑎 𝜌 and 𝛤 = 𝛤 ′, x :𝑟 𝜏 , then 𝜌 = 𝜌 ′, x ↦→ ⟨v, 𝑟 ⟩ and 𝛤 ′ ⊢𝑎 𝜌 ′ and
⊢ v : 𝜏𝑟 .

2. If 𝛤 ⊢𝑎 𝜌 and x ∉ dom(𝜌) and ⊢𝑎 v : 𝜏𝑟 , then 𝛤, x :𝑟 𝜏 ⊢𝑎 𝜌, x ↦→ ⟨v, 𝑟 ⟩.

lemma 3.4.4 (Strengthening for values): If 𝛤 ⊢𝑎 v : T , then ⊢𝑎 v : T .

lemma 3.4.5 (Canonical forms): If 𝛤 ⊢𝑎 v : 𝜏𝑟 then v = new D([v1]𝑟1, . . . , [v𝑛]𝑟𝑛),
𝜏 = C and D ≤ C, fields(D) = 𝜏

𝑟1
1 f1; . . . 𝜏

𝑟𝑛
𝑛 f𝑛; and 𝛤1 + . . . + 𝛤𝑛 ⪯ 𝛤 and

𝛤𝑖 ⊢𝑎 v𝑖 : 𝜏𝑠 ·𝑟𝑖𝑖
, for all 𝑖 ∈ 1..𝑛, with 𝑟 ⪯ 𝑠 .

lemma 3.4.6 (Renaming): If 𝛤, x :𝑟 𝜏 ⊢𝑎 e : T and y ∉ dom(𝛤), then
𝛤, y :𝑟 𝜏 ⊢𝑎 e[y/x] : T .

lemma 3.4.7 : If dom(𝛩) ∩ dom(𝛥) = ∅ then (𝛤,𝛩) + 𝛥 = (𝛤 + 𝛥),𝛩 .

Theorem 3.4.2 is proved as a special case of the following more general
result, which makes explicit the invariant needed to carry out the induction.
Indeed, by looking at the reduction rules, we can see that computational rules
either add new variables to the environment or reduce the grade of a variable
of some amount that depends on the grade of the reduction. In the latter
case, the amount can be arbitrarily chosen with the only restrictions that it
must be non zero and at least the grade of the reduction. However, to prove
progress, we not only have to prove that a reduction can be done, but, if the
reduction is done in a context, say evaluating the argument of a constructor,
then after the reduction we still have enough resources to go on with the
reduction, that is, to evaluate the rest of the context (the other arguments
of the constructor). This means that the resulting environment has enough
resources to type the whole context (the constructor call). For this reason,
in the statement of the theorem that follows, we add to the assumption of
Theorem 3.4.2 a typing context𝛩 that would contain the information on the
amount of resources that we want to preserve during the reduction (see Item 4
of the theorem). This allows us to choose the appropriate grade to be kept
when reducing a variable and to reconstruct a typing derivation when using
contextual reduction rules. For the expression at the top level, as we see from
the proof of Theorem 3.4.2,𝛩 is simply 0 for all variables in the typing context
in which the expression is typed.

theorem 3.4.8 : If 𝛥 ⊢𝑎 e : 𝜏𝑟 and 𝛤 ⊢𝑎 𝜌 and 𝛥 +𝛩 ⪯ 𝛤 and dom(𝛥) ⊆
dom(𝛩) and e is not a value, then there are e′, 𝜌 ′, 𝛥′, 𝛤 ′ and𝛩 ′ such that

34 graded featherweight java

1. e |𝜌 →𝑟 e′ |𝜌 ′ and

2. 𝛥′ ⊢𝑎 e′ : 𝜏𝑟 with 𝛥′ ⪯ 𝛥,𝛩 ′ and

3. 𝛤 ′ ⊢𝑎 𝜌 ′ with 𝛤 ′ ⪯ 𝛤,𝛩 ′ and

4. 𝛥′ +𝛩 ⪯ 𝛤 ′.

Proof: The proof is by induction on typing rules.

(t-var) By hypothesis, we know that 𝛥 = x :𝑟 𝜏 and, with 𝑟 ≠ 0. Since
dom(𝛥) ⊆ dom(𝛩), we have 𝛩 = 𝛩1, x :𝑠′ 𝜏 and, since 𝛥 + 𝛩 ⪯ 𝛤 ,
we have 𝛤 = 𝛤1, x :𝑠 𝜏 with 𝑟 + 𝑠′ ⪯ 𝑠 . Moreover, because 𝛤 ⊢𝑎 𝜌 , by
Lemma 3.4.3(1), we have that 𝜌 = 𝜌 ′, x ↦→ ⟨v, 𝑠⟩, 𝛤1 ⊢𝑎 𝜌 ′ and ⊢𝑎 v : 𝜏𝑠 .
Then, by rule (var), we get x |𝜌 →𝑟 v |𝜌 ′, x ↦→ ⟨v, 𝑠′⟩. Since 𝑠′ ⪯ 𝑟+𝑠′ ⪯ 𝑠 ,
by rule (t-sub), we get ⊢𝑎 v : 𝜎𝑠′ and by Lemma 3.4.3(2) we conclude
𝛤1, x :𝑠′ 𝜏 ⊢𝑎 𝜌 ′, x ↦→ ⟨v, 𝑠′⟩. Since 𝑟 ⪯ 𝑟 + 𝑠′ ⪯ 𝑠 , again by rule (sub),
we get ⊢𝑎 v : 𝜏𝑟 . Now, let us set 𝛥′ = 𝛩 ′ = ∅ and 𝛤 ′ = 𝛤1, x :𝑠′ 𝜏 .
We immediately get 𝛥′ ⪯ 𝛥,𝛩 ′ and 𝛤 ′ ⪯ 𝛤,𝛩 ′. Furthermore, we get
𝛥′ + 𝛩 ⪯ 𝛤 ′ as 𝛥′ + 𝛩 = 𝛩 = 𝛩1, x :𝑠′ 𝜏 and, from 𝛩 ⪯ 𝛥 + 𝛩 ⪯
𝛤 = 𝛤1, x :𝑠 𝜏 , we get 𝛩1 ⪯ 𝛤1, therefore 𝛩1, x :𝑠′ 𝜏 ⪯ 𝛤1, x :𝑠′ 𝜏 = 𝛤 ′, as
needed.

(t-sub) By hypothesis we know that 𝛥1 ⊢𝑎 e : 𝜏𝑠1 with 𝛥1 ⪯ 𝛥 and
𝜏𝑠1 ≤ 𝜏𝑟2 , which implies 𝜏1 ≤ 𝜏2 and 𝑟 ⪯ 𝑠 . We distinguish two cases.

• If e is a value then we have the thesis
• Otherwise, notice that 𝛥1 +𝛩 ⪯ 𝛥𝛩 ⪯ 𝛤 holds by monotonicity of

+; then, by induction hypothesis, we have
1. e |𝜌 →𝑠 e′ |𝜌 ′ and

2. 𝛥′ ⊢𝑎 e′ : 𝜏𝑠1 with 𝛥′ ⪯ 𝛥1,𝛩
′ and

3. 𝛤 ′ ⊢𝑎 𝜌 ′ with 𝛤 ′ ⪯ 𝛤,𝛩 ′ and

4. 𝛥′ +𝛩 ⪯ 𝛤 ′.
By Item 1 and Proposition 3.2.5, since 𝑟 ⪯ 𝑠 , we get e |𝜌 →𝑟 e′ |𝜌 ′.
Since 𝜏𝑠1 ≤ 𝜏𝑟2 , from Item 2, by rule (t-sub), we get 𝛥′ ⊢𝑎 e′ : 𝜏𝑟2 and,
Since 𝛥1 ⪯ 𝛥, we get 𝛥′ ⪯ 𝛥1,𝛩

′ ⪯ 𝛥,𝛩 ′, proving the thesis.

(t-field-access) By hypothesis we know that 𝛥 ⊢𝑎 [e]𝑟.f𝑖 : 𝜏𝑟 ·𝑟𝑖𝑖
, 𝛥 ⊢𝑎

e1 : C𝑟 and fields(C) = 𝜏
𝑟1
1 f1; . . . 𝜏

𝑟𝑛
𝑛 f𝑛;. We distinguish two cases.

• If e1 is a value, then, by Lemma 3.4.5, e1 = new D([v1]𝑠1, . . . , [v𝑚]𝑠𝑚)
and D ≤ C, fields(D) = 𝜎

𝑠1
1 f ′1; . . . 𝜎

𝑠𝑚
𝑚 f ′𝑚; and 𝛥1 + . . . + 𝛥𝑚 ⪯ 𝛥

and 𝛥 𝑗 ⊢𝑎 v𝑗 : 𝜎
𝑠 ·𝑠 𝑗
𝑗

, for all 𝑗 ∈ 1..𝑚, with 𝑟 ⪯ 𝑠 . By coherence con-
ditions on the class table, we know that 𝑛 ≤ 𝑚 and, for all 𝑗 ∈ 1..𝑛,
𝜎 𝑗 = 𝜏 𝑗 and 𝑠 𝑗 = 𝑟 𝑗 and f ′𝑗 = f𝑗 . Hence, since 𝑖 ∈ 1..𝑛, we have
𝑖 ∈ 1..𝑚 and so, by rule (field-access), we get [e1]𝑟.f𝑖 |𝜌 →𝑟 ·𝑟𝑖 v𝑖 |𝜌 .
Since 𝑟 ⪯ 𝑠 , we have 𝑟 · 𝑟𝑖 ⪯ 𝑠 · 𝑟𝑖 = 𝑠 · 𝑠𝑖 and 𝜏𝑖 = 𝜎𝑖 , hence, by rule
(t-sub), we derive 𝛥𝑖 ⊢𝑎 v𝑖 : 𝜏𝑟 ·𝑟𝑖𝑖

. Let us set 𝛥′ = 𝛥𝑖 , 𝛤 ′ = 𝛤 and

3.4 resource-aware soundness 35

𝛩 ′ = ∅. Then, the thesis trivially follows as 𝛥′ = 𝛥𝑖 ⪯
∑𝑚
𝑗=1 𝛥 𝑗 ⪯ 𝛥.

• Otherwise, by induction hypothesis, we get
1. e1 |𝜌 →𝑟 e′1 |𝜌 ′ and

2. 𝛥′ ⊢𝑎 e′1 : C𝑟 with 𝛥′ ⪯ 𝛥,𝛩 ′ and

3. 𝛤 ′ ⊢𝑎 𝜌 ′ with 𝛤 ′ ⪯ 𝛤,𝛩 ′ and

4. 𝛥′ +𝛩 ⪯ 𝛤 ′.
Let us set e′ = [e′1]𝑟.f𝑖 . By Item 1 and the hypothesis, using rule
(field-access-ctx), we derive e |𝜌 →𝑟 ·𝑟𝑖 e

′ |𝜌 ′. By Item 2 and the
hypothesis, using rule (t-field-access), we get 𝛥′ ⊢𝑎 e′ : 𝜏𝑟 ·𝑟𝑖

𝑖
.

Finally, by Items 3 and 4, we get the thesis.

(t-new) By hypothesis we have 𝛥 = 𝛥1 + . . . + 𝛥𝑛 and
We distinguish two cases.

• If e𝑖 is a value for all 𝑖 ∈ 1..𝑛, then e is a value as well and this
proves the thesis.

• Otherwise, there is an 𝑖 ∈ 1..𝑛 such that e𝑖 is not a value while e𝑗
is a value, for all 𝑗 ∈ 1..(𝑖−1). Let us set𝛩 = 𝛩 +∑𝑖−1

𝑗=1 𝛥 𝑗 +
∑𝑛
𝑗=𝑖+1 𝛥 𝑗 .

Since dom(𝛥𝑖) ⊆ dom(𝛥) ⊆ dom(𝛩), we have dom(𝛥𝑖) ⊆ dom(𝛩)
and, by construction, we have 𝛥𝑖 +𝛩 = 𝛥 +𝛩 ⪯ 𝛤 . Then, by induc-
tion hypothesis, we get
1. e𝑖 |𝜌 →𝑟 ·𝑟𝑖 e

′
𝑖 |𝜌 ′

2. 𝛥′
𝑖 ⊢𝑎 e′𝑖 : 𝜏

𝑟 ·𝑟𝑖
𝑖

with 𝛥′
𝑖 ⪯ 𝛥𝑖 ,𝛩

′ and

3. 𝛤 ′ ⊢𝑎 𝜌 ′ with 𝛤 ′ ⪯ 𝛤,𝛩 ′ and

4. 𝛥′
𝑖 +𝛩 ⪯ 𝛤 ′.

Let us set e′ = new C([v1]𝑟1, . . . , [v𝑖−1]𝑟𝑖−1, [e′𝑖]𝑟𝑖 , . . . , [e𝑛]𝑟𝑛) and
𝛥′ =

∑𝑖−1
𝑗=1 𝛥 𝑗 + 𝛥′

𝑖 +
∑𝑛
𝑗=𝑖+1 𝛥 𝑗 . By Item 1 and the hypothesis, using

rule (new-ctx), we derive e |𝜌 →𝑟 e′ |𝜌 ′. By Item 2 and the hypo-
thesis, using rule (t-new), we get 𝛥′ ⊢𝑎 e′ : C𝑟 . By Item 3, we have
dom(𝛩 ′) ∩ dom(𝛤) = ∅ and, since 𝛥 𝑗 ⪯ 𝛥 +𝛩 ⪯ 𝛤 for all 𝑗 ∈ 1..𝑛,
we get dom(𝛥 𝑗) ∩ dom(𝛩 ′) = ∅. Hence, by monotonicity of + and
Lemma 3.4.7, we get

𝛥′ ⪯
𝑖−1∑︁
𝑗=1

𝛥 𝑗 + (𝛥𝑖 ,𝛩 ′) +
𝑛∑︁

𝑗=𝑖+1
𝛥 𝑗 =

(
𝑛∑︁
𝑗=1

𝛥 𝑗

)
,𝛩 ′ = 𝛥,𝛩 ′

Finally, since 𝛥′ +𝛩 = 𝛥′
𝑖 +𝛩 , by Item 4 we get the thesis.

(t-invk) By hypothesis we know that [e0]𝑟0.m([e1]𝑟1, . . . , [e𝑛]𝑟𝑛), 𝛥 =

𝛥0 + . . . + 𝛥𝑛 , mtype(C0,m) = 𝑟0, 𝜏
𝑟1
1 . . . 𝜏

𝑟𝑛
𝑛 → 𝜏𝑟 , 𝛥0 ⊢𝑎 e0 : C𝑟00 , and

𝛥𝑖 ⊢𝑎 e𝑖 : 𝜏𝑟𝑖𝑖 , for all 𝑖 ∈ 1..𝑛. Then, we distinguish two cases.

• If, for all 𝑖 ∈ 0..𝑛, e𝑖 is a value, say e𝑖 = v𝑖 , by Lemma 3.4.5, we
have v0 = new D(_) with D ≤ C0 and, by coherence conditions

36 graded featherweight java

on the class table, we have mbody(D,m) = ⟨x1 . . . x𝑛, e′⟩. Then, by
rule (invk), we get e |𝜌 →𝑟 e′ [y0/this] [y1/x1 . . . y𝑛/x𝑛] |𝜌 ′ with
y0, . . . , y𝑛 ∉ dom(𝜌) and 𝜌 ′ = 𝜌, y0 ↦→ ⟨v0, 𝑟0⟩, . . . , y𝑛 ↦→ ⟨v𝑛, 𝑟𝑛⟩.
By Lemma 3.4.4, we get ⊢𝑎 v𝑖 : 𝜏𝑟𝑖

𝑖
, for all 𝑖 ∈ 1..𝑛, hence, by

Lemma 3.4.3(2), we get 𝛤, y0 :𝑟0 C0, y1 :𝑟1 𝜏1 . . . , y𝑛 :𝑟𝑛 𝜏𝑛 ⊢𝑎 𝜌 ′. By
condition (t-meth) and rule (t-sub), we know that this :𝑟0 C0,

x1 :𝑟1 𝜏1, . . . , x𝑛 :𝑟𝑛 𝜏𝑛 ⊢𝑎 e′ : C𝑟 . Let us set 𝛥′ = 𝛩 ′ = y0 :𝑟0 C0, . . .

. . . , y𝑛 :𝑟𝑛 𝜏𝑛 , and 𝛤 ′ = 𝛤,𝛩 ′, hence, we immediately have 𝛤 ′ ⪯
𝛤,𝛩 ′ and 𝛥′ = 𝛩 ′ ⪯ 𝛥,𝛩 ′. By Lemma 3.4.6, we have 𝛥′ ⊢𝑎
e′ [y0/this] [y1/x1 . . . y𝑛/x𝑛] : C𝑟 . Finally, since 𝛩 ⪯ 𝛥 +𝛩 ⪯ 𝛤

and y0, . . . , y𝑛 ∉ dom(𝛤) imply y0, . . . , y𝑛 ∉ dom(𝛩), we get
𝛥′ +𝛩 = 𝛩, 𝛥′ ⪯ (𝛥 +𝛩), 𝛥′ ⪯ 𝛤, 𝛥′ = 𝛤 ′.

• Otherwise, there is an 𝑖 ∈ 0..𝑛 such that e𝑖 is not a value while e𝑗
is a value, for all 𝑗 ∈ 0..(𝑖 − 1). Let us set 𝛥 =

∑𝑖−1
𝑗=0 𝛥 𝑗 +

∑𝑛
𝑗=𝑖+1 𝛥 𝑗

and𝛩 = 𝛩 + 𝛥. so 𝛥𝑖 +𝛩 = 𝛥 +𝛩 ⪯ 𝛤 . By induction hypothesis,
we have
1. e𝑖 |𝜌 →𝑟𝑖 e

′
𝑖 |𝜌 ′

2. 𝛥′
𝑖 ⊢𝑎 e′𝑖 : 𝜏

𝑟𝑖
𝑖
where 𝜏0 = C0 with 𝛥′

𝑖 ⪯ 𝛥𝑖 ,𝛩
′ and

3. 𝛤 ′ ⊢𝑎 𝜌 ′ with 𝛤 ′ ⪯ 𝛤,𝛩 ′ and

4. 𝛥′
𝑖 +𝛩 ⪯ 𝛤 ′.

Let us set e′ = [e0]𝑟0.m(. . . , [e𝑖−1]𝑟𝑖−1, [e′𝑖]𝑟𝑖 , [e𝑖+1]𝑟𝑖+1, . . . , [e𝑛]𝑟𝑛)
and 𝛥′ = 𝛥′

𝑖 + 𝛥. By Item 1 and the hypothesis, using either rule
(invk-rcv-ctx) or (invk-args-ctx), depending on whether 𝑖 = 0
or not, we derive e |𝜌 →𝑟 e′ |𝜌 ′. By Item 2 and the hypothesis,
using rule (t-invk), we have 𝛥′ ⊢𝑎 e′ : 𝜏𝑟 . By Item 3, we have
dom(𝛩 ′)∩dom(𝛤) = ∅ and, since𝛥 ⪯ 𝛥+𝛩 ⪯ 𝛤 , we get dom(𝛥)∩
dom(𝛩 ′) = ∅. Hence, by Item 2, monotonicity of + and Lemma 3.4.7,
we get 𝛥′ = 𝛥′

𝑖 + 𝛥 ⪯ (𝛥𝑖 ,𝛩 ′) + 𝛥 = (𝛥𝑖 + 𝛥),𝛩 ′ = 𝛥,𝛩 ′. Finally,
since 𝛥′ +𝛩 = 𝛥′

𝑖 + 𝛥 +𝛩 = 𝛥′
𝑖 +𝛩 , by Item 4 we get the thesis.

(t-block) By hypothesis we have 𝛥 = 𝛥1 + 𝛥2 and 𝛥1 ⊢𝑎 e1 : 𝜎𝑠 and
𝛥2, x :𝑠 𝜎 ⊢𝑎 e2 : 𝜏𝑟 . Then, we distinguish two cases.

• If e1 = v is a value, then by rule (block), we have {𝜎 x = [v]𝑠; e2}|𝜌 →𝑟

e2 [y/x] |𝜌, y ↦→ ⟨v, 𝑠⟩ with y ∉ dom(𝜌). By Lemma 3.4.4, we get
⊢𝑎 v : 𝜎𝑠 , hence, by Lemma 3.4.3(2), we get 𝛤, y :D 𝑠 ⊢𝑎 𝜌, y ↦→
⟨v, 𝑠⟩. Notice that this implies y ∉ dom(𝛤), thus y ∉ dom(𝛥1)
and y ∉ dom(𝛥2). Then, let us set 𝛩 ′ = y :𝑠 D, 𝛥′ = 𝛥2,𝛩

′

and 𝛤 ′ = 𝛤,𝛩 ′, hence, we immediately have 𝛤 ′ ⪯ 𝛤,𝛩 ′ and
𝛥′ = 𝛥2,𝛩

′ ⪯ 𝛥,𝛩 ′, as 𝛥2 ⪯ 𝛥1+𝛥2 = 𝛥. By Lemma 3.4.6, we have
𝛥2, y :𝑠 𝜎 ⊢𝑎 e2 [y/x] : 𝜏𝑟 . Finally, since 𝛩 ⪯ 𝛤 and y ∉ dom(𝛤)
imply y ∉ dom(𝛩), by Lemma 3.4.7, we get 𝛥′+𝛩 = (𝛥2+𝛩),𝛩 ′ ⪯
(𝛥 +𝛩),𝛩 ′ ⪯ 𝛤,𝛩 ′ = 𝛤 ′.

3.4 resource-aware soundness 37

• Otherwise, let us set 𝛩 = 𝛩 + 𝛥2. Since dom(𝛥1) ⊆ dom(𝛥) ⊆
dom(𝛩), we have dom(𝛥1) ⊆ dom(𝛩) and, by construction, we
also have 𝛥1 +𝛩 = 𝛥 +𝛩 ⪯ 𝛤 . By induction hypothesis, we have
1. e1 |𝜌 →𝑠 e′1 |𝜌 ′

2. 𝛥′
1 ⊢𝑎 e′1 : 𝜎𝑠 with 𝛥′

1 ⪯ 𝛥1,𝛩
′ and

3. 𝛤 ′ ⊢𝑎 𝜌 ′ with 𝛤 ′ ⪯ 𝛤,𝛩 ′ and

4. 𝛥′
1 +𝛩 ⪯ 𝛤 ′.

Let us set e′ = {𝜎 x = [e′1]𝑠; e2} and 𝛥′ = 𝛥′
1 + 𝛥2. By Item 1 and

the hypothesis, using rule (block-ctx), we derive e |𝜌 →𝑟 e′ |𝜌 ′.
By Item 2 and the hypothesis, using rule (t-block), we have 𝛥′ ⊢𝑎
e′ : 𝜏𝑟 . By Item 3, we have dom(𝛩 ′) ∩ dom(𝛤) = ∅ and, since
𝛥2 ⪯ 𝛥 + 𝛩 ⪯ 𝛤 , we get dom(𝛥2) ∩ dom(𝛩 ′) = ∅. Hence, by
monotonicity of + and Lemma 3.4.7, we get 𝛥′ ⪯ (𝛥1,𝛩

′) + 𝛥2 =

(𝛥1 + 𝛥2),𝛩 ′ = 𝛥,𝛩 ′. Finally, since 𝛥′ +𝛩 = 𝛥′
1 +𝛩 , by Item 4 we

get the thesis.

□

We are now ready to prove Theorem 3.4.2.

proof of Theorem 3.4.2
Proof: Inverting rule (t-conf), we get 𝛤 ⊢𝑎 𝜌 and 𝛥 ⊢𝑎 e : C𝑟 with 𝛥 ⪯ 𝛤 .
Applying Theorem 3.4.8 with𝛩 = 0 · 𝛥 we get

1. e |𝜌 →𝑟 e′ |𝜌 ′ and

2. 𝛥′ ⊢𝑎 e′ : C𝑟 with 𝛿 ′ ⪯ 𝛥,𝛩 ′ and

3. 𝛤 ′ ⊢𝑎 𝜌 with 𝛤 ′ ⪯ 𝛤,𝛩 ′ and

4. 𝛥′ +𝛩 ⪯ 𝛤 ′.

By Item 4, we get 𝛥′ ⪯ 𝛤 ′, hence by (t-conf) and Items 2 and 3, we conclude
𝛤 ′ ⊢𝑎 e′ |𝜌 ′ : C𝑟 . Finally, by Proposition 3.2.4, we have dom(𝜌) ⊆ dom(𝜌 ′)
and, since by rule (t-env) and Items 2 and 3 we know that dom(𝜌) = dom(𝛤)
and dom(𝜌 ′) = dom(𝛤 ′), we get the thesis. □

Using Theorem 3.4.2 we can prove a resource-aware soundness theorem. As
already noticed, it is a form of soundness-may, that is, it states that a well-typed
configuration either converges to a well-typed value or diverges. We write
e |𝜌 →∞

𝑟 when there exists an infinite sequence of steps in→𝑟 starting with
e |𝜌 . Note that this judgement can be equivalently defined coinductively by the
following rule:

e′ |𝜌 ′ →∞
𝑟

e |𝜌 →∞
𝑟

e |𝜌 →𝑟 e′ |𝜌 ′

38 graded featherweight java

corollary 3.4.9 (Resource-aware soundness): If 𝛤 ⊢𝑎 e |𝜌 : C𝑟 then either
e |𝜌 →★

𝑟 v |𝜌 ′ with 𝛤 ′ ⊢𝑎 v |𝜌 ′ : C𝑟 , or e |𝜌 →∞
𝑟 .

Proof: We say that a well-typed configuration 𝛤 ⊢𝑎 e |𝜌 : C𝑟 is well-
converging if there are v, 𝜌 ′, 𝛤 ′ and 𝛥 such that e |𝜌 →★

𝑟 v |𝜌 ′ and 𝛤 ′ ⊢𝑎
v |𝜌 ′ : C𝑟 with 𝛤 ′ ⪯ 𝛤, 𝛥 and dom(𝛤) ⊆ dom(𝛤 ′). The statement is equi-
valent to the following: if 𝛤 ⊢𝑎 e |𝜌 : C𝑟 and it is not well-converging, then
e |𝜌 →∞

𝑟 . We prove this by coinduction. Let us consider a well-typed configur-
ation 𝛤 ⊢𝑎 e |𝜌 : C𝑟 which is not well-converging. Then, by Theorem 3.4.2, we
get e |𝜌 →★

𝑟 e′ |𝜌 ′ where 𝛤 ′ ⊢𝑎 e′ |𝜌 ′ : C𝑟 with dom(𝛤) ⊆ 𝛤 ′ and 𝛤 ′ ⪯ 𝛤, 𝛥. To
conclude the proof by coinduction, we just have to check that 𝛤 ′ ⊢𝑎 e′ |𝜌 ′ : C𝑟
is not well-converging. Suppose it is well-converging, then e′ |𝜌 ′ →★

𝑟 v |𝜌 ′′
where 𝛤 ′′ ⊢𝑎 v |𝜌 ′′ : C𝑟 with dom(𝛤 ′) ⊆ dom(𝛤 ′′) and 𝛤 ′′ ⪯ 𝛤 ′, 𝛥′. There-
fore, we have e |𝜌 →𝑟 e′ |𝜌 ′ →★

𝑟 v |𝜌 ′′ and dom(𝛤) ⊆ dom(𝛤 ′) ⊆ dom(𝛤 ′′)
and 𝛤 ′′ ⪯ 𝛤 ′, 𝛥′ ⪯ 𝛤, 𝛥, 𝛥′, proving that 𝛤 ⊢𝑎 e |𝜌 : C𝑟 is well-converging,
which is a contradiction, as needed. □

Finally, the following corollary states both subject reduction for the standard
semantics, that is, type and coeffects are preserved, and completeness of the
instrumented semantics, that is, for well-typed configurations, every reduction
step in the usual semantics can be simulated by an appropriate step in the
instrumented semantics.

corollary 3.4.10 (Subject reduction/Completeness): If 𝛤1 ⊢ e1 |𝜌1 : 𝜏𝑟 ⇝
e′1 |𝜌 ′1 and e1 |𝜌1 → e2 |𝜌2, then 𝛤2 ⊢ e2 |𝜌2 : 𝜏𝑟 ⇝ e′2 |𝜌 ′2 with dom(𝛤1) ⊆
dom(𝛤2) and 𝛤2 ⪯ 𝛤1, 𝛥, and e′1 |𝜌 ′1 →𝑟 e′2 |𝜌 ′2.

Proof: By Proposition 3.4.1 we get 𝛤1 ⊢𝑎 e′1 |𝜌 ′1 : 𝜏𝑟 and, by Theorem 3.4.2,
e′1 |𝜌 ′1 →𝑟 e′2 |𝜌 ′2 and 𝛤2 ⊢𝑎 e′2 |𝜌 ′2 : C𝑟 with dom(𝛤1) ⊆ dom(𝛤2) and 𝛤2 ⪯ 𝛤1, 𝛥.
By Proposition 3.4.1, we get 𝛤2 ⊢ ⌈e′2⌉ | ⌈𝜌 ′2⌉ : 𝜏𝑟 ⇝ e′2 |𝜌 ′2 and by Proposi-
tion 3.2.6, we get e1 |𝜌1 → ⌈e′2⌉ | ⌈𝜌 ′2⌉. By the determinism of the standard
semantics we have ⌈e′2⌉ = e2 and ⌈𝜌 ′2⌉ = 𝜌2, hence the thesis. □

4
Multi-graded Featherweight Java

In this chapter, our aim is to make the language multi-graded, in the sense
that a user could be interested in tracking simultaneously more than one
resource usage. For example, both the number of occurences of a variable and
its privacy level. This poses the problem of defining the result when grades
of different kinds should be combined by the type system. In Section 4.1, we
start from two ingredients, a set of grade kinds and a family of grade algebras
indexed on that, to show a simple way to specify the combination of grades of
different kinds by defining a direct refinement relation. In Section 4.2 we define
a general construction which, given a family of grade algebras and a family
of homomorphisms, leads to a unique grade algebra of heterogeneous grades.
This allows a modular approach, in the sense that the developed meta-theory,
including the proof of the results, applies to this case as well. In Section 4.3,
finally, we consider the issue of providing linguistic support to specify the
desired grade algebras and homomorphisms, hence to make possible for the
programmer to define her/his grades.

4.1 Combining grades

As we have seen, each grade algebra encodes a specific notion of resource
usage. However, in a program one may need different notions of usage for
different kinds of resources or different pieces of code, e.g., different classes.
This means that one needs to use several grade algebras at the same time, that
is, a family (𝐻k)𝑘∈K of grade algebras1 indexed over a set K of grade kinds.
We assume grade kinds to always include N and T, with 𝐻N and 𝐻T the grade
algebras of natural numbers and trivial, respectively. We consider the (affine)2
grade algebra of natural numbers, as in Example 2.4.3, since they play a special
role.

example 4.1.1 : Assume to use, in a program, grade kinds N, A, P, PP, AP,
and T, where:

• 𝐻A is the affinity grade algebra, as in Example 2.4.3(2).

1 𝐻 stands for “heterogeneous”.
2 We leave to further work to investigate how the construction presented here should be
adapted to non-affine grade algebras.

39

40 multi-graded featherweight java

• 𝐻P and𝐻PP are two different instantiations of the grade algebra of privacy
levels, as in Example 3.2.3; namely, in𝐻P there are only two privacy levels
pub and priv, whereas in 𝐻PP we have privacy levels a, b, c, d, with
a ⪯ b ⪯ d and a ⪯ c ⪯ d.

• Finally, 𝐻AP is 𝐻A ×𝐻P, as in Example 2.4.3(6), tracking simultaneously
affinity and privacy.

We want to make grades of all such kinds simultaneously available to the
programmer. In order to achieve this, we should specify how to combine grades
of different kinds through their distinctive operators; for instance, an object
with grade of kind k could have a field with grade of kind 𝜇, hence a field
access should be graded by their multiplication.3
In other words, we need to construct, starting from the family (𝐻k)𝑘∈𝐾 ,

a single grade algebra of heterogeneous grades. In this way, the meta-theory
developed in previous sections for an arbitrary grade algebra applies also to
the case when several grade algebras are used at the same time. Note that this
construction is necessary since we do not want available grades to be fixed, as
done by Orchard, Liepelt, and Harley Eades III [49]; rather, the programmer
should be allowed to define grades for a specific application, using some
linguistic support which could be the language itself, as will be described in
Section 4.3.

The obvious approach is to define heterogeneous grades as pairs ⟨k, 𝑟 ⟩ where
k ∈ K , and 𝑟 ∈ 𝐻k . Concerning the definition of the operators, in previous
work [8, 9], handling coeffects rather than grades, we took the simplest choice,
that is, combining (by either sum or multiplication) grades of different kinds
always returns ⟨∞, T⟩, meaning, in a sense, that we “do not know” how the
combination should be done. The only exception are grades of kind N; indeed,
since the corresponding grade algebra is initial, we know that, for any kind k,
there is a unique grade homomorphism 𝜄k from Nat≤ to 𝐻k , hence, to combine
⟨𝑛,N⟩ with ⟨𝑟, k⟩, we can map 𝑛 into a grade of kind k through such homo-
morphism, and then use the operator of kind k. Here, as done by Bianchini
et al. [10], we generalize this idea, by allowing the programmer to specify, for
each pair of kinds k and 𝜇, a uniquely determined kind k ⊕ 𝜇 and two uniquely
determined grade homomorphisms lh𝐻𝜅,𝜇 : 𝐻𝜅 → 𝐻𝜅⊕𝜇 , and rh𝐻𝜅,𝜇 : 𝐻𝜇 → 𝐻𝜅⊕𝜇 .
In this way, to combine ⟨𝜅, 𝑟 ⟩ and ⟨𝜇, 𝑠⟩, we can map both in grades of kind
k ⊕ 𝜇, and then use the operator of kind k ⊕ 𝜇.
The operator ⊕ and the family of unique homomorphisms, one for each

pair of kinds, can be specified by the programmer, in a minimal and easy to
check way, by defining a (direct) refinement ⊏1, as defined below, and a family
of grade homomorphisms 𝐻𝜅,𝜇 : 𝐻𝜅 → 𝐻𝜇 , indexed over pairs 𝜅 ⊏1 𝜇.

Given a relation ⇒ on kinds, a path of lenght 𝑛 from k0 to k𝑛 is a sequence
k0 . . . k𝑛 such as k𝑖 ⇒ k𝑖+1, for all 𝑖 ∈ 1..𝑛 − 1. We say that 𝜇 is an ancestor of
𝜅 if there is a path from 𝜅 to 𝜇.

3 Note that this combination has different aims and properties with respect to the product of
grade algebras, as we explain better at the end of this section.

4.1 combining grades 41

A relation ⊏1 onK\{N, T} is a (direct) refinement if the following conditions
hold:

1. for each 𝜅, 𝜇, there exists at most one path from 𝜅 to 𝜇

2. for each 𝜅, 𝜇 with a common ancestor, there is a least common ancestor,
denoted 𝜅 ⊕ 𝜇; that is, such that, for any common ancestor 𝜈 , 𝜈 is an
ancestor of k ⊕ 𝜇

Note that, thanks to requirement (1), requirement (2) means that the unique
path, e.g., from 𝜅 to 𝜈 , consists of a unique path from 𝜅 to k ⊕ 𝜇, and then a
unique path from k ⊕ 𝜇 to 𝜈 .

Given a direct refinement ⊏1, we can derive the following structure on K :

• ⊏1 can be extended to a partial order ⊑ on K , by taking the reflexive and
transitive closure of ⊏1 and adding N ⊑ 𝜅 ⊑ T for all 𝜅 ∈ K .

• ⊕ can be extended to all pairs, by defining 𝜅 ⊕ 𝜇 = T if 𝜅 and 𝜇 have no
common ancestor.

Altogether, we obtain an instance of a structure called grade signature, as will
be detailed in Definition 4.2.1. Moreover, given a ⊏1-family of homomorphisms:

• they can be extended, by composition4, to all pairs ⟨𝜅, 𝜇⟩ ∈ K \ {N, T}
such that there is a path from𝜅 to 𝜇; since this path is unique, the resulting
homomorphism is uniquely defined as follows, inductively on the lenght
of the path:

– for all paths 𝜅, 𝐻𝜅,𝜅 (𝑟) = 𝑟

– if 𝜅 ⊏1 𝜈 and 𝜈 ⊑ 𝜇 then 𝐻𝜅,𝜇 (𝑟) = 𝐻𝜈,𝜇 (𝐻𝜅,𝜈 (𝑟)).
• for each kind 𝜅, we add the unique homomorphisms from Nat≤ and to
Triv.

Besides a grade algebra for each kind, we get a grade homomophism for each
pair ⟨𝜅, 𝜇⟩ such that 𝜅 ⊑ 𝜇. That is, we obtain an instance of a structure called
heterogeneous grade algebra, as will be detailed in Definition 4.2.2.

Thus, as desired, combining grades of kinds ⟨𝜅, 𝑟 ⟩ and ⟨𝜇, 𝑠⟩ can be defined
by mapping both 𝑟 and 𝑠 into grades of kind 𝜅 ⊕ 𝜇, and then the operators of
kind 𝜅 ⊕ 𝜇 are applied.
The fact that in this way we actually obtain a grade algebra, that is, all

required axioms are satisfied, is proved in the next subsection on the more
general case of an arbitrary grade signature and heterogeneous grade algebra.
Note the special role played by the grade kinds N and T, with their corres-

ponding grade algebras. The former turns out to be the minimal kind required
in a grade signature (Definition 4.2.1); this is important since the zero and
one of the resulting grade algebra (hence the zero and one used in the type
system) will be those of this kind. The latter, as shown above, is used as default
common ancestor for pairs of kinds which do not have one.

4 Note that in this way we obtain, in particular, all the identities.

42 multi-graded featherweight java

T

A P

AP PP

N

figure 4.1 Direct refinement diagram

example 4.1.2 : Coming back to our example, a programmer could define
the direct refinement and the corresponding homomorphisms as follows:

• PP ⊏1 P, and the corresponding homomorphism maps, e.g., a and b into
priv and c and d into pub

• AP ⊏1 A, and AP ⊏1 P, and the corresponding homomorphisms are the
projections.

Thus, for instance, multiplying the grade ⟨AP, ⟨∞, priv⟩⟩, meaning that we
can use the resource an arbitrary number of times in priv mode, and ⟨PP, d⟩,
meaning that we can use the resource in d mode, gives priv. Indeed, both
grades are mapped into the grade algebra of privacy levels 0 ⪯ priv ⪯ pub; for
the former, the information about the affinity is lost, whereas for the second
the privacy level d is mapped into pub; finally, we get priv = priv · pub.

The direct refinement is pictorially shown in Figure 4.1. Red dotted arrows
denote (some of) the order relations added for N and T.

Note that specifying the grade signature and the heterogeneous grade al-
gebra indirectly, by means of the direct refinement and the corresponding
homomorphisms, has a fundamental advantage: the semantic check that, for
each 𝜅 , 𝜇, we can map grades of grade 𝜅 into grades of kind 𝜇 in a unique way
(that is, there is at most one homomorphism), which would require checking
the equivalence of function definitions, is replaced by the checks (1) and (2)
in the definition of direct refinement, which are purely syntactic and can be
easily implemented in a type system (a simple stronger condition is to impose
that each kind has a unique parent in the direct refinement, as it is for single
inheritance).
In Section 4.3, we will see how to express both grade algebras and homo-

morphisms as Java classes.
To conclude this section, note that the combination of grades described

here has different aim and properties with respect to the product of two grade
algebras, as defined in Example 2.4.3(6). Indeed, in the product, the aim is to

4.2 a general construction 43

simultaneously track the usages tracked by the two components, as shown by
𝐻AP in Example 4.1.1; that is, grades in the product carrymore information than
the original ones, and there are obvious homomorphisms (the projections) to
the two grade algebras.
In this section, instead, the aim is to combine grades by providing homo-

morphisms from the original grade algebras to another one, which intuitively
carries less (or equal) information than both, as, for instance, in Figure 4.1,
where both AP and PP are mapped into P. That is, two grades of kind AP
and PP, respectively, can be combined by mapping both in grades where we
only track privacy levels as in PP. Note also that there is no general way to
define a homomorphism from each component grade algebra to the product:
for instance, if one of the components is T, the only element can either be
mapped into the 0, or in the 1 element of the product.

4.2 A general construction

We provide a construction that, starting from a family of grade algebras with
a suitable structure, yields a unique grade algebra summarising the whole
family. As a consequence, the meta-theory developed in previous sections for
a single grade algebra applies also to the case when several grade algebras are
used at the same time.

To develop this construction, we use simple and standard categorical tools,
referring to Mac Lane [44] and Riehl [53] for more details. Given a category
C , we denote by C0 the collection of objects in C and we say that C is small
when C0 is a set. Recall that any partially ordered set P = ⟨P0, ⊑⟩ can be seen
as a small category where objects are the elements of P0 and, for all 𝑥,𝑦 ∈ P0,
there is an arrow 𝑥 → 𝑦 iff 𝑥 ⊑ 𝑦; hence, for every pair of objects in P0, there is
at most one arrow between them, and the only isomorphisms are the identities.

definition 4.2.1 : A grade signature S is a partially ordered set with finite
suprema, that is, it consists of the following data:

• a partially ordered set ⟨S0, ⊑⟩;
• a function ⊕ : S0 × S0 → S0 monotone in both arguments and such that

for all 𝜅, 𝜇, 𝜈 ∈ S0, 𝜅 ⊕ 𝜇 ⊑ 𝜈 iff 𝜅 ⊑ 𝜈 and 𝜇 ⊑ 𝜈 ;
• a distinguished object 𝐼 ∈ S0 such that 𝐼 ⊑ 𝜅, for all 𝜅 ∈ S0.

Intuitively, objects in S represent the kinds of grades one wants to work
with, while the arrows, namely, the order relation, model a refinement between
such kinds: 𝜅 ⊑ 𝜇 means that the kind 𝜅 is more specific than the kind 𝜇. The
operation ⊕ combines two kinds to produce the most specific kind generalising
both. Finally, the kind 𝐼 is the most specific one. Reading a grade signature S
as a category, being a grade signature means having finite coproducts.

44 multi-graded featherweight java

It is easy to check that the following properties hold for all 𝜅, 𝜇, 𝜈 ∈ S0:
(𝜅 ⊕ 𝜇) ⊕ 𝜈 = 𝜅 ⊕ (𝜇 ⊕ 𝜈) 𝜅 ⊕ 𝜅 = 𝜅

𝜅 ⊕ 𝜇 = 𝜇 ⊕ 𝜅 𝜅 ⊕ 𝐼 = 𝜅

namely, ⟨S0, ⊕, 𝐼 ⟩ is a commutative idempotent monoid.

definition 4.2.2 : A heterogeneous grade algebra over the grade signature
S is just a functor 𝐻 : S → GrAlg aff. This means that it consists of a grade
algebra 𝐻 (𝜅), written also 𝐻𝜅 , for every kind 𝜅 ∈ S0, and a grade algebra
homomorphism𝐻𝜅,𝜇 : 𝐻𝜅 → 𝐻𝜇 for every arrow𝜅 ⊑ 𝜇, respecting composition
and identities5 , that is, 𝜅 ⊑ 𝜇 ⊑ 𝜈 implies 𝐻𝜅,𝜈 = 𝐻𝜇,𝜈 ◦ 𝐻𝜅,𝜇 and 𝐻𝜅,𝜅 = id𝐻𝜅

.

Essentially, the homomorphisms 𝐻𝜅,𝜇 realise the refinement 𝜅 ⊑ 𝜇, trans-
forming grades of kind 𝜅 into grades of kind 𝜇, preserving the grade algebra
structure.

Observe that the arrows 𝐼 ⊑ 𝜅 and 𝜅 ⊑ 𝜅 ⊕ 𝜇 and 𝜇 ⊑ 𝜅 ⊕ 𝜇 in S give rise to
the following grade algebra homomorphisms:
in𝐻𝜅 = 𝐻𝐼 ,𝜅 : 𝐻𝐼 → 𝐻𝜅 lh𝐻𝜅,𝜇 = 𝐻𝜅,𝜅⊕𝜇 : 𝐻𝜅 → 𝐻𝜅⊕𝜇 rh𝐻𝜅,𝜇 = 𝐻𝜇,𝜅⊕𝜇 : 𝐻𝜇 → 𝐻𝜅⊕𝜇

which provide us with a way to map grades of kind 𝐼 into grades of any other
kind, and grades of kind 𝜅 and 𝜇 into grades of their composition 𝜅 ⊕ 𝜇. By
functoriality of 𝐻 and using the commutative idempotent monoid structure
of S , we get the following equalities hold in the category GrAlg aff, ensuring
consistency of such transformations:

lh𝐻𝜅⊕𝜇,𝜈 ◦ lh𝐻𝜅,𝜇 = lh𝐻𝜅,𝜇⊕𝜈 (4.1)

rh𝐻𝜅⊕𝜇,𝜈 ◦ lh𝐻𝜅,𝜇 = rh𝐻𝜅,𝜇⊕𝜈 ◦ lh𝐻𝜇,𝜈 (4.2)

lh𝐻𝜅,𝜇 = rh𝐻𝜇,𝜅 (4.3)

lh𝐻𝜅,𝜅 = id𝐻𝜅
(4.4)

lh𝐻𝜅,𝐼 = id𝐻𝜅
(4.5)

rh𝐻𝜅,𝐼 = in𝐻𝜅 (4.6)
In the following, we will show how to turn a heterogeneous grade algebra

into a single grade algebra. The procedure we will describe is based on a
general construction due to Grothendieck [36] defined on indexed categories.
Let us assume a grade signature S and a heterogeneous grade algebra

𝐻 : S → GrAlg aff. We consider the following set:
|𝐺 (𝐻) | = {⟨𝜅, 𝑟 ⟩ | 𝜅 ∈ S0, 𝑟 ∈ |𝐻𝜅 |}

That is, elements of 𝐺 (𝐻) will be kinded grades, namely, pairs of a kind 𝜅 and
a grade of that kind. Note that this is a set because S is small, that is, S0 is a
set. Then, we define a binary relation ⪯𝐻 on |𝐺 (𝐻) | as follows:

⟨𝜅, 𝑟 ⟩ ⪯𝐻 ⟨𝜇, 𝑠⟩ iff 𝜅 ⊑ 𝜇 and 𝐻𝜅,𝜇 (𝑟) ⪯𝜇 𝑠
that is, the kind 𝜅 must be more specific than the kind 𝜇 and, transforming 𝑟
by 𝐻𝜅,𝜇 , we obtain a grade of kind 𝜇 which is smaller than 𝑠 . These data define
a partially ordered set as the following proposition shows.

5 The notation 𝐻𝜅,𝜇 makes sense, because between 𝜅 and 𝜇 there is at most one arrow.

4.2 a general construction 45

proposition 4.2.3 : ⟨|𝐺 (𝐻) |, ⪯𝐻 ⟩ is a partially ordered set.

Proof: We have to prove that ⪯𝐻 is reflexive, transitive and antisymmetric.
Given an element ⟨𝜅, 𝑟 ⟩ ∈ |𝐺 (𝐻) |, since 𝜅 ⊑ 𝜅 and 𝐻𝜅,𝜅 = id𝐻𝜅

, by func-
toriality of 𝐻 , we have

𝐻𝜅,𝜅 (𝑟) = id𝐻𝜅
(𝑟) = 𝑟

hence ⟨𝜅, 𝑟 ⟩ ⪯𝐻 ⟨𝜅, 𝑟 ⟩, which proves reflexivity.
Given ⟨𝜅, 𝑟 ⟩ ⪯𝐻 ⟨𝜇, 𝑠⟩ ⪯𝐻 ⟨𝜈, 𝑡⟩, we know that 𝜅 ⊑ 𝜇 ⊑ 𝜈 and 𝐻𝜅,𝜇 (𝑟) ⪯𝜇 𝑠

and 𝐻𝜇,𝜈 (𝑠) ⪯𝜈 𝑡 and, by functoriality of 𝐻 , 𝐻𝜅,𝜈 = 𝐻𝜇,𝜈 ◦𝐻𝜅,𝜇 . Therefore, we
get

𝐻𝜅,𝜈 (𝑟) = 𝐻𝜇,𝜈 (𝐻𝜅,𝜇 (𝑟)) ⪯𝜈 𝐻𝜇,𝜈 (𝑠) ⪯𝜈 𝑡

hence ⟨𝜅, 𝑟 ⟩ ⪯𝐻 ⟨𝜈, 𝑡⟩, which proves transitivity.
Given ⟨𝜅, 𝑟 ⟩ ⪯𝐻 ⟨𝜇, 𝑠⟩ ⪯𝐻 ⟨𝜅, 𝑟 ⟩, we know that 𝜅 ⊑ 𝜇 ⊑ 𝜅 and𝐻𝜅,𝜇 (𝑟) ⪯𝜇 𝑠

and𝐻𝜇,𝜅 (𝑠) ⪯𝜅 𝑟 . Since ⊑ is antisymmetric, we get𝜅 = 𝜇, hence𝐻𝜅,𝜇 = 𝐻𝜇,𝜅 =

𝐻𝜅,𝜅 , which, and, by functoriality of 𝐻 , is equal to the identity id𝐻𝜅
. This

implies that 𝑟 ⪯𝜅 𝑠 and 𝑠 ⪯𝜅 𝑟 , which implies 𝑟 = 𝑠 by antisymmetry of ⪯𝜅 .
□

The additive structure is given by a binary operation +𝐻 : |𝐺 (𝐻) | × |𝐺 (𝐻) | →
|𝐺 (𝐻) | and an element 0𝐻 in |𝐺 (𝐻) | defined as follows:

⟨𝜅, 𝑟 ⟩ +𝐻 ⟨𝜇, 𝑠⟩ = ⟨𝜅 ⊕ 𝜇, lh𝐻𝜅,𝜇 (𝑟) +𝜅⊕𝜇 rh𝐻𝜅,𝜇 (𝑠)⟩ 0𝐻 = ⟨𝐼 , 0𝐼 ⟩
This means that, the sum of two elements ⟨𝜅, 𝑟 ⟩ and ⟨𝜇, 𝑠⟩ is performed by first
mapping 𝑟 and 𝑠 in the most specific kind generalising both 𝜅 and 𝜇, namely
𝜅 ⊕ 𝜇, and then by summing them in the grade algebra over that kind. The
zero element is just the zero of the most specific kind.

proposition 4.2.4 : ⟨|𝐺 (𝐻) |, ⪯𝐻 , +𝐻 , 0𝐻 ⟩ is an ordered commutativemonoid.

Proof: We check the four properties.

monotonicity of +𝐻 Consider ⟨𝜅, 𝑟 ⟩ ⪯𝐻 ⟨𝜇, 𝑠⟩ and ⟨𝜅′, 𝑟 ′⟩ ⪯𝐻 ⟨𝜇′, 𝑠′⟩,
then we know that𝜅 ⊑ 𝜇 and𝜅′ ⊑ 𝜇′ and𝐻𝜅,𝜇 (𝑟) ⪯𝜇 𝑠 and𝐻𝜅′,𝜇′ (𝑟 ′) ⪯𝜇′
𝑠′. By monotonicity of lh𝐻

𝜇,𝜇′ and rh
𝐻
𝜇,𝜇′ and +𝜇⊕𝜇′ , we get

lh𝐻𝜇,𝜇′ (𝐻𝜅,𝜇 (𝑟)) +𝜇⊕𝜇′ rh𝐻𝜇,𝜇′ (𝐻𝜅′,𝜇′ (𝑟 ′)) ⪯𝜇⊕𝜇′ lh𝐻𝜇,𝜇′ (𝑠) +𝜇⊕𝜇′ rh𝐻𝜇,𝜇′ (𝑠′)

By monotonicity of ⊕, we get 𝜅 ⊕ 𝜅′ ⊑ 𝜇 ⊕ 𝜇′, then, by functoriality of
𝐻 and by definition of lh𝐻 and 𝑖𝑛 𝑗𝑟 , we have

lh𝐻𝜇,𝜇′ ◦ 𝐻𝜅,𝜇 = 𝐻𝜅⊕𝜅′,𝜇⊕𝜇′ ◦ lh𝐻𝜅,𝜅′ rh𝐻𝜇,𝜇′ ◦ 𝐻𝜅′,𝜇′ = 𝐻𝜅⊕𝜅′,𝜇⊕𝜇′ ◦ rh𝐻𝜅,𝜅′

therefore, we get

𝐻𝜅⊕𝜅′,𝜇⊕𝜇′ (lh𝐻𝜅,𝜅′ (𝑟) +𝜅⊕𝜅′ rh𝐻𝜅,𝜅′ (𝑟 ′)) ⪯𝜇⊕𝜇′
lh𝐻
𝜇,𝜇′ (𝐻𝜅,𝜇 (𝑟)) +𝜇⊕𝜇′ rh𝐻𝜇,𝜇′ (𝐻𝜅′,𝜇′ (𝑟 ′)) ⪯𝜇⊕𝜇′

lh𝐻
𝜇,𝜇′ (𝑠) +𝜇⊕𝜇′ rh𝐻𝜇,𝜇′ (𝑠′)

46 multi-graded featherweight java

This proves ⟨𝜅, 𝑟 ⟩ +𝐻 ⟨𝜅′, 𝑟 ′⟩ ⪯𝐻 ⟨𝜇, 𝑠⟩ +𝐻 ⟨𝜇′, 𝑠′⟩, as needed.
associativity of +𝐻 Consider elements ⟨𝜅, 𝑟 ⟩, ⟨𝜇, 𝑠⟩ and ⟨𝜈, 𝑡⟩ in

|𝐺 (𝐻) |. Using Equations (4.1) and (4.2), we have the following

(⟨𝜅, 𝑟 ⟩ +𝐻 ⟨𝜇, 𝑠⟩) +𝐻 ⟨𝜈, 𝑡⟩ = ⟨𝜅 ⊕ 𝜇, lh𝐻𝜅,𝜇 (𝑟) + rh𝐻𝜅,𝜇 (𝑠)⟩ +𝐻 ⟨𝜈, 𝑡⟩
= ⟨(𝜅 ⊕ 𝜇) ⊕ 𝜈, lh𝐻𝜅⊕𝜇,𝜈 (lh𝐻𝜅,𝜇 (𝑟) + rh𝐻𝜅,𝜇 (𝑠)) + rh𝐻𝜅⊕𝜇,𝜈 (𝑡)⟩
= ⟨𝜅 ⊕ (𝜇 ⊕ 𝜈), lh𝐻𝜅,𝜇⊕𝜈 (𝑟) + (rh𝐻𝜅,𝜇⊕𝜈 (lh𝐻𝜇,𝜈 (𝑠) + rh𝐻𝜇,𝜈 (𝑡))⟩
= ⟨𝜅, 𝑟 ⟩ +𝐻 (⟨𝜇, 𝑠⟩ +𝐻 ⟨𝜈, 𝑡⟩)

commutativity of +𝐻 Consider elements ⟨𝜅, 𝑟 ⟩ and ⟨𝜇, 𝑠⟩ in |𝐺 (𝐻) |.
Using Equation (4.3), we get the following

⟨𝜅, 𝑟 ⟩ +𝐻 ⟨𝜇, 𝑠⟩ = ⟨𝜅 ⊕ 𝜇, lh𝐻𝜅,𝜇 (𝑟) +𝜅⊕𝜇 rh𝐻𝜅,𝜇 (𝑠)⟩ = ⟨𝜅 ⊕ 𝜇, rh𝐻𝜅,𝜇 (𝑠) +𝜅⊕𝜇 lh𝐻𝜅,𝜇 (𝑟)⟩
= ⟨𝜇 ⊕ 𝜅, lh𝐻𝜇,𝜅 (𝑠) +𝜇⊕𝜅 rh𝐻𝜇,𝜅 (𝑟)⟩ = ⟨𝜇, 𝑠⟩ +𝐻 ⟨𝜅, 𝑟 ⟩

neutrality of 0𝐻 Consider ⟨𝜅, 𝑟 ⟩ in |𝐺 (𝐻) |. Using Equations (4.3),
(4.5) and (4.6), we the the following

⟨𝜅, 𝑟 ⟩ +𝐻 0𝐻 = ⟨𝜅 ⊕ 𝐼 , lh𝐻𝜅,𝐼 (𝑟) +𝜅⊕𝐼 rh
𝐻
𝜅,𝐼 (0𝐼)⟩ = ⟨𝜅, 𝑟 +𝜅 in𝐻𝜅 (0𝐼)⟩

= ⟨𝜅, 𝑟 +𝜅 0𝜅⟩ = ⟨𝜅, 𝑟 ⟩

□

proposition 4.2.5 : 0𝐻 ⪯𝐻 ⟨𝜅, 𝑟 ⟩ for every ⟨𝜅, 𝑟 ⟩ ∈ |𝐺 (𝐻) |.

Proof: Since in𝐻𝜅 is a grade algebra homomorphism, we have in𝐻𝜅 (0𝐼) = 0𝜅
and by definition of grade algebra we have 0𝜅 ⪯𝜅 𝑟 . Therefore, in𝐻𝜅 (0𝐼 ⪯𝜅 𝑟 ,
which proves the thesis by definition of ⪯𝐻 . □

Similarly, themultiplicative structure is given by a binary operation ·𝐻 : |𝐺 (𝐻) |×
|𝐺 (𝐻) | → |𝐺 (𝐻) | and an element 1𝐻 in |𝐺 (𝐻) | defined as follows:

⟨𝜅, 𝑟 ⟩ ·𝐻 ⟨𝜇, 𝑠⟩ =
{
⟨𝜅 ⊕ 𝜇, lh𝐻𝜅,𝜇 (𝑟) ·𝜅⊕𝜇 rh𝐻𝜅,𝜇 (𝑠)⟩ ⟨𝜅, 𝑟 ⟩ ≠ 0𝐻 and ⟨𝜇, 𝑠⟩ ≠ 0𝐻
0𝐻 otherwise

1𝐻 = ⟨𝐼 , 1𝐼 ⟩

Notice that the definitions above follow almost the same pattern as additive
operations, but we force that multiplying by 0𝐻 we get again 0𝐻 , which is a
key property of grade algebras.

proposition 4.2.6 : ⟨|𝐺 (𝐻) |, ⪯𝐻 , ·𝐻 , 1𝐻 ⟩ is an ordered monoid.

Proof: To prove the equational axioms of monoid (associativity, and neutral-
ity) the proof is the same as Proposition 4.2.4 when all the involved elements
are different from 0𝐼 , and it is trivial otherwise. Indeed, if one of such elements
is 0𝐼 , then the whole multiplication gives 0𝐼 by definition.
To prove monotonicity of ·𝐻 , consider ⟨𝜅, 𝑟 ⟩ ⪯𝐻 ⟨𝜇, 𝑠⟩ and ⟨𝜅′, 𝑟 ′⟩ ⪯𝐻

⟨𝜇′, 𝑠′⟩ in |𝐺 (𝐻) |. If they are all different from 0𝐼 , the proof goes as in Propos-

4.2 a general construction 47

ition 4.2.4. If either ⟨𝜅, 𝑟 ⟩ = 0𝐼 or ⟨𝜅′, 𝑟 ′⟩ = 0𝐼 , then ⟨𝜅, 𝑟 ⟩ ·𝐻 ⟨𝜅′, 𝑟 ′⟩ = 0𝐼 and
so the thesis follows by Proposition 4.2.5. If ⟨𝜇, 𝑠⟩ = 0𝐼 , then ⟨𝜅, 𝑟 ⟩ ⪯𝐻 ⟨𝜇, 𝑠⟩ =
⟨𝐼 , 0𝐼 ⟩ implies 𝜅 ⊑ 𝐼 and 𝐻𝜅,𝐼 (𝑟) ⪯𝐼 0𝐼 and, since 𝐼 ⊑ 𝜅 by definition of grade
signature, we get 𝜅 = 𝐼 . Therefore, by functoriality of 𝐻 , we have 𝐻𝜅,𝐼 = id𝐻𝐼

,
hence 𝑟 ⪯𝐼 0𝐼 which implies 𝑟 = 0𝐼 , since 𝐻𝐼 is a grade algebra. This proves
that ⟨𝜅, 𝑟 ⟩ = ⟨𝐼 , 0𝐼 ⟩ = 0𝐻 and so we get ⟨𝜅, 𝑟 ⟩ ·𝐻 ⟨𝜅′, 𝑟 ′⟩ = 0𝐻 = ⟨𝜇, 𝑠⟩ ·𝐻 ⟨𝜇′, 𝑠′⟩,
as needed. Finally, the case ⟨𝜇′, 𝑠′⟩ = ⟨𝐼 , 0𝐼 ⟩ is analogous, hence we get the
thesis. □

Altogether, we finally get the following result.

theorem 4.2.7 : 𝐺 (𝐻) = ⟨|𝐺 (𝐻) |, ⪯𝐻 , +𝐻 , ·𝐻 , 0𝐻 , 1𝐻 ⟩ is a grade algebra.

Proof: By Propositions 4.2.4 and 4.2.6 we have both the additive and mul-
tiplicative monoid structures. Proposition 4.2.5 proves that 0𝐻 is the least
element of the order ⪯𝐻 . The fact that multiplying by 0𝐼 we get again 0𝐼
holds by definition. Hence, it remains to prove that ·𝐻 distributes over +𝐻 .
To this end, consider ⟨𝜅, 𝑟 ⟩, ⟨𝜇, 𝑠⟩ and ⟨𝜈, 𝑡⟩ in |𝐺 (𝐻) | and assume they are
all different from 0𝐼 . Using Equations (4.1) to (4.4), we get the following
equations:

lh𝐻𝜅⊕𝜇,𝜅⊕𝜈 ◦ lh𝐻𝜅,𝜇 = lh𝐻(𝜅⊕𝜇)⊕𝜅,𝜈 ◦ lh
𝐻
𝜅⊕𝜇,𝜅 ◦ lh𝐻𝜅,𝜇

= lh𝐻
𝜅⊕(𝜅⊕𝜇),𝜈 ◦ rh

𝐻
𝜅,𝜅⊕𝜇 ◦ lh𝐻𝜅,𝜇

= lh𝐻(𝜅⊕𝜅)⊕𝜇,𝜈 ◦ lh
𝐻
𝜅⊕𝜅,𝜇 ◦ lh𝐻𝜅,𝜅

= lh𝐻𝜅⊕𝜇,𝜈 ◦ lh𝐻𝜅,𝜇 = lh𝐻𝜅,𝜇⊕𝜈
rh𝐻𝜅⊕𝜇,𝜅⊕𝜈 ◦ lh𝐻𝜅,𝜈 = lh𝐻(𝜅⊕𝜇)⊕𝜅,𝜈 ◦ rh

𝐻
𝜅⊕𝜇,𝜅 = lh𝐻

𝜅⊕(𝜅⊕𝜇),𝜈 ◦ lh
𝐻
𝜅,𝜅⊕𝜇

= lh𝐻(𝜅⊕𝜅)⊕𝜇,𝜈 ◦ lh
𝐻
𝜅⊕𝜅,𝜇 ◦ lh𝐻𝜅,𝜅

= lh𝐻𝜅⊕𝜇,𝜈 ◦ lh𝐻𝜅,𝜇
= lh𝐻𝜅,𝜇⊕𝜈

lh𝐻𝜅⊕𝜇,𝜅⊕𝜈 ◦ rh𝐻𝜅,𝜇 = lh𝐻(𝜅⊕𝜇)⊕𝜅,𝜈 ◦ lh
𝐻
𝜅⊕𝜇,𝜅 ◦ rh𝐻𝜅,𝜇

= lh𝐻
𝜅⊕(𝜅⊕𝜇),𝜈 ◦ rh

𝐻
𝜅,𝜅⊕𝜇 ◦ rh𝐻𝜅,𝜇 = lh𝐻(𝜅⊕𝜅)⊕𝜇,𝜈 ◦ rh

𝐻
𝜅⊕𝜅,𝜇

= rh𝐻𝜅,𝜇⊕𝜈 ◦ lh𝐻𝜇,𝜈
rh𝐻𝜅⊕𝜇,𝜅⊕𝜈 ◦ rh𝐻𝜅,𝜈 = rh𝐻(𝜅⊕𝜇)⊕𝜅,𝜈 = rh𝐻𝜅⊕𝜇,𝜈

= rh𝐻𝜅,𝜇⊕𝜈 ◦ rh𝐻𝜇,𝜈
which imply the following

(⟨𝜅, 𝑟 ⟩ ·𝐻 ⟨𝜇, 𝑠⟩) +𝐻 (⟨𝜅, 𝑟 ⟩ ·𝐻 ⟨𝜈, 𝑡⟩) =
= ⟨(𝜅 ⊕ 𝜇) ⊕ (𝜅 ⊕ 𝜈), lh𝐻𝜅⊕𝜇,𝜅⊕𝜈 (lh𝐻𝜅,𝜇 (𝑟) + rh𝐻𝜅,𝜇 (𝑠)) + rh𝐻𝜅⊕𝜇,𝜅⊕𝜈 (lh𝐻𝜅,𝜈 (𝑟) + rh𝐻𝜅,𝜈 (𝑡))⟩
= ⟨𝜅 ⊕ (𝜇 ⊕ 𝜈), (lh𝐻𝜅,𝜇⊕𝜈 (𝑟) · rh𝐻𝜅,𝜇⊕𝜈 (lh𝐻𝜇,𝜈 (𝑠))) + (lh𝐻𝜅,𝜇⊕𝜈 (𝑟) · rh𝐻𝜅,𝜇⊕𝜈 (rh𝐻𝜇,𝜈 (𝑡)))⟩
= ⟨𝜅 ⊕ (𝜇 ⊕ 𝜈), lh𝐻𝜅,𝜇⊕𝜈 (𝑟) · rh𝐻𝜅,𝜇⊕𝜈 (lh𝐻𝜇,𝜈 (𝑠) + rh𝐻𝜇,𝜈 (𝑡))⟩
= ⟨𝜅, 𝑟 ⟩ ·𝐻 (⟨𝜇, 𝑠⟩ +𝐻 ⟨𝜈, 𝑡⟩)

48 multi-graded featherweight java

e ::= x | e.f | new C(es) | e.m(es) | C.m(es) | expression
| {𝜏 x = e; e′} | {T̂ x = e; e′} | if (e) e1 else e2 |
| e instanceof C | (C)e | true | false | . . .

𝜏 ::= C | boolean
Ŝ, T̂ ::= 𝜏 v̂

v ::= new C(vs) | true | false value

figure 4.2 Syntax with user-defined grades

which proves distributivity when all the elements are different from 0𝐻 .
Now, suppose that ⟨𝜅, 𝑟 ⟩ = 0𝐻 , then we have ⟨𝜅, 𝑟 ⟩ ·𝐻 (⟨𝜇, 𝑠⟩ +𝐻 ⟨𝜈, 𝑡⟩) =

⟨𝜅, 𝑟 ⟩ ·𝐻 ⟨𝜇, 𝑠⟩ = ⟨𝜅, 𝑟 ⟩ ·𝐻 ⟨𝜈, 𝑡⟩ = 0𝐻 , hence distributivity trivialy holds.
Finally, suppose ⟨𝜇, 𝑠⟩ = 0𝐻 (the case ⟨𝜈, 𝑡⟩ = 0𝐻 is similar), then we have
⟨𝜇, 𝑠⟩ +𝐻 ⟨𝜈, 𝑡⟩ = ⟨𝜈, 𝑡⟩ and ⟨𝜅, 𝑟 ⟩ ·𝐻 ⟨𝜇, 𝑠⟩ = 0𝐻 . Therefore, we get

⟨𝜅, 𝑟 ⟩ ·𝐻 (⟨𝜇, 𝑠⟩ +𝐻 ⟨𝜈, 𝑡⟩) = ⟨𝜅, 𝑟 ⟩ ·𝐻 ⟨𝜈, 𝑡⟩ = 0𝐻 +𝐻 ⟨𝜅, 𝑟 ⟩ ·𝐻 ⟨𝜈, 𝑡⟩
= ⟨𝜅, 𝑟 ⟩ ·𝐻 ⟨𝜇, 𝑠⟩ +𝐻 ⟨𝜅, 𝑟 ⟩ ·𝐻 ⟨𝜈, 𝑡⟩

□

4.3 User-defined grades
We describe now an extension of the calculus supporting user-defined grades.
The syntax is reported in Figure 4.2. The differences with the syntax in Fig-
ure 3.4 are emphasized in grey. The key feature is that in graded types, occur-
ring in local declarations and method types, the grade is in turn an expression
of the language, notably a value. As a metavariable for such values we use v̂
rather than v to suggest that they are expected to be values of (a subclass of)
a grade class, that is, a class implementing a grade algebra, as defined in the
following. Moreover, we include a block where the local declaration has a non-
graded type, and some other Java constructs useful to write methods of grade
classes, notably static methods, booleans and conditional, cast and dynamic
typecheck. Moreover, we assume that in the class table there can be abstract
classes, which may declare abstract methods, and cannot be instantiated. We
will write ¬abs(C) to denote that C is non-abstract.

We take a stratified approach, where the class table consists of two parts.

standard class table The first part of the class table is a standard FJ
class table, without grade annotations. Classes declared in this class table
can be grade classes, that is, classes implementing methods corresponding to
the ingredients of a grade algebra, or homomorphism classes, that is, classes
implementing the homomorphisms between grade algebras. Both are described
in detail below.

We extend the definition of mtype(C,m) given on page 18 to express static
methods as well. That is, we write

4.3 user-defined grades 49

• mtype(C,m) = ★, 𝜏1 . . . 𝜏𝑛 → 𝜏 to mean that m is an instance method
• mtype(C,m) = 𝜏1 . . . 𝜏𝑛 → 𝜏 to mean that m is a static method

Also the condition on well-typedness of method bodies is adapted to manage
abstract and static methods.

(t-meth) mtype(C,m) = 𝜏1 . . . 𝜏𝑛 → 𝜏 ∧ ¬abs(C) implies
mbody(C,m) = ⟨x1 . . . x𝑛, e⟩ and
this : C, x1 : 𝜏1, . . . , x𝑛 : 𝜏𝑛 ⊢ e : 𝜏

(t-st-meth) mtype(C,m) = 𝜏1 . . . 𝜏𝑛 → 𝜏 implies
mbody(C,m) = ⟨x1 . . . x𝑛, e⟩ and
x1 : 𝜏1, . . . , x𝑛 : 𝜏𝑛 ⊢ e : 𝜏

grade classes We write grade(C) to mean that C is a grade class. In
the explicit syntax of the class table used to write examples, we will add a
grade modifier before class.

We assume that, if grade(C) holds, then:

mtype(C,leq) = ★,C → boolean
mtype(C,sum) = ★,C → C
mtype(C,mul) = ★,C → C
mtype(C,zero) =→ C
mtype(C,one) = → C

We assume the following predefined classes, implementing the predefined
grade algebras 𝐻N and 𝐻T:

abstract grade class Nat {
abstract boolean leq(Nat x);
abstract Nat sum(Nat x);
abstract Nat mult(Nat x);
static Nat zero(){new Zero()}
static Nat one(){new Succ(Nat.zero())}

}

class Zero extends Nat {
boolean leq(Nat x){true}
Nat sum(Nat x){x}
Nat mult(Nat x){this}

}

class Succ extends Nat {
Nat pred;
boolean leq(Nat x){

if (x instanceof Zero) false else
pred.leq(((Succ) x).pred)

}
Nat sum(Nat x){new Succ(pred.sum(x))}
Nat mult(Nat x){pred.mult(x).sum(x)}

}

50 multi-graded featherweight java

grade class Triv {
boolean leq(Triv t){true}
Triv sum(Triv t){this}
Triv mult(Triv t){this}
static Triv zero(){new Triv()}
static Triv one(){new Triv()}

}

Predefined natural numbers are implemented in Peano style; we have a class
representing zero and a class representing the successor of a natural number.
The operations are the standard ones for Peano numbers. The trivial grade
algebra is implemented by a class representing the only element and all the
operations return this element, as expected.

homomorphism classes We write homo(D,C1,C2) to mean that D is
an (assumed to be unique) homomorphism class from C1 to C2, assumed to be
grade classes. In the explicit syntax of the class table used to write examples,
we will add a homo modifier before class, and use a conventional name
HomoFromC1ToC2. We assume that, if homo(D,C1,C2) holds, then:

mtype(D,app) = C1 → C2

This static method takes in input a grade of kind C1 and returns the correspond-
ing grade of kind C2. By declaring homomorphism classes, the programmer
defines the direct refinement: that is, if homo(D,C1,C2) holds for some D, then
C1 ⊏

1 C2. The required conditions on ⊏1 can be checked by analysing the
class table.

We assume the following predefined homomorphism classes for each grade
class C, corresponding to the unique homomorphisms 𝐻N,k and 𝐻k,T for each
kind k:

homo class HomoFromNatToC{
static C app(Nat x){

if (x instanceof Zero) C.zero() else
if (x.pred instanceof Zero) C.one() else

app(((Succ) x).pred).sum(C.one())
}

}

homomorphism class HomoFromCToTriv{
static Triv app(C x){new Triv()}

}

In app method in class HomoFromNatToC we have two base cases: the zero
of natural numbers is mapped to the zero of the destination algebra and the
successor of zero, that is, the one of natural numbers, is mapped to the one of the
destination algebra. For any other natural number, first we recursively apply
the homomorphism to its predecessor and then this result is summed with
the one of the destination algebra using the sum operation of the destination

4.3 user-defined grades 51

algebra. Method app in class HomoFromTrivToC maps every grade to the
only element in 𝐻T.

example 4.3.1 : We show a Java implementation of Example 4.1.2. First
we define the grade classes. Notably, Affinity implements 𝐻A, Privacy
implements 𝐻P, PPrivacy implements 𝐻PP, and APPair implements 𝐻AP.
abstract grade class Affinity {

abstract boolean leq(Affinity x);
abstract Affinity sum(Affinity x);
abstract Affinity mult(Affinity x);
static Affinity zero(){new AffinityZero()}
static Affinity one(){new One()}
}

class AffinityZero extends Affinity {
boolean leq(Affinity x){true}
Affinity sum(Affinity x){x}
Affinity mult(Affinity x){this}

}

class One extends Affinity {
boolean leq(Affinity x){!(x instanceof AffinityZero)}
Affinity sum(Affinity x){
if (x instanceof AffinityZero) this else new Omega()

}
Affinity mult(Affinity x){x}

}

class Omega extends Affinity {
boolean leq(Affinity x){x instanceof Omega}
Affinity sum(Affinity x){this}
Affinity mult(Affinity x){

if (x instanceof AffinityZero) new AffinityZero()
else this

}
}

The grade class Affinity is extended by three classes: AffinityZero,
One and Omega, representing respectively 0,1, and ∞. Since 0 is smaller or
equal than every grade, method leq in class AffinityZero returns true for
all arguments. Since AffinityZero is the neutral element of sum, its method
sum returns always the argument and, since AffinityZero is the zero of
multiplication, its method mult returns always 0. In class One method leq is
false only if the input is 0. In method sum we have that 1 summed with 0 is 1
and 1 summed with any other grade is ∞. Also, since 1 is the neutral element
of multiplication, its method mult returns always the argument. Since∞ is
smaller or equal only of itself, we have that its method leq returns true only
if the argument is∞. Moreover, since∞ summed with any other grade is∞,
its method sum returns always∞. In method mult, we have to check whether
the argument is 0; in that case the result is 0, otherwise the result is∞.

52 multi-graded featherweight java

abstract grade class Privacy {
abstract boolean leq(Privacy x);
Privacy mult(Privacy x){if (this.leq(x)) this else x}
Privacy sum(Privacy x){if (this.leq(x)) x else this}
static Privacy zero(){new PrivacyZero()}
static Privacy one(){new Public()}

}

class Private extends Privacy {
boolean leq(Privacy x){!x instanceof PrivacyZero}

}

class Public extends Privacy {
boolean leq(Privacy x){x instanceof Public}

}

class PrivacyZero extends Privacy {
boolean leq(Privacy x){x instanceof PrivacyZero}

}

The abstract grade class Privacy is extended by three classes representing
the three grades. Methods sum and mult are defined once and for all in the
abstract class since they have the same definition in all the grades. In mult we
take as result the more restrictive, that is, the smaller, privacy level whereas
in sum we take as result the less restrictive, that is, the bigger, privacy level.
In a word, the sum is the join and the multiplication is the meet of the grade
algebra. The implementation of leq methods is straightforward.

abstract grade class PPrivacy {
abstract boolean leq(PPrivacy x);
PPrivacy mult(PPrivacy x){

if (this.leq(x)) this else
if (x.leq(this)) x else

new LevelA()
}
PPrivacy sum(PPrivacy x){
if (this.leq(x)) x else

if (x.leq(this)) this else
new LevelD()

}
static Nat zero(){new PPrivacyZero()}
static Nat one(){new LevelD()}

}

class PPrivacyZero extends PPrivacy {
boolean leq(PPrivacy x){true}

}

class LevelA extends PPrivacy {
boolean leq(PPrivacy x){!(x instanceof PPrivacyZero)}

}

4.3 user-defined grades 53

class LevelB extends PPrivacy {
boolean leq(PPrivacy x){

x instanceof LevelB or x instanceof LevelD
}

}

class LevelC extends PPrivacy {
boolean leq(PPrivacy x){

x instanceof LevelC or x instanceof LevelD
}

}

class LevelD extends PPrivacy {
boolean leq(PPrivacy x){x instanceof LevelD}

}

The abstract grade class PPrivacy is extended by five classes, representing
the five grades. Also here the methods sum and mult are defined in the abstract
class PPrivacy, since they have the same definition for all grades, which is the
join and the meet of the grade algebra. In the definition of mult we have that
if the two levels are comparable, then the result is the smaller one, otherwise
we return a since the only incomparable grades are b and c. Similar reasoning
applies to sum.

grade class APPair {
Affinity left;
Privacy right;
boolean leq(APPair x){
this.left.leq(x.left) and this.right.leq(x.right)
}
APPair mult(APPair x){

new APPair(this.left.mult(x.left),this.right.mult(x.right))
}
APPair sum(APPair x){

new APPair(this.left.sum(x.left),this.right.sum(x.right))
}
static APPair zero(){

new APPair(Affinity.zero(),Privacy.zero())
}
static APPair one(){

new APPair(Affinity.one(),Privacy.one())
}

}

The grade class APPair has two fields representing the two components
of the pair; on the left we have an Affinity grade, on the right we have a
Privacy grade. All the methods apply the corresponding operation to the two
components separately. The zero and the one of this algebra are, respectively,
⟨0A, 0P⟩ and ⟨1A, 1P⟩.
We define now the homomorphism classes.

homo class HomoAPPairToAffine{

54 multi-graded featherweight java

Affine app(APPair x){x.left}
}

homo class HomoAPPairToPrivacy{
Privacy app(APPair x){x.right}

}

homo class HomoPPrivacyToPrivacy{
Privacy app(PPrivacy x){

if (x instanceof LevelC) new Public() else
if (x instanceof levelD) new Public() else new Private()

}
}

Method app in class HomoAPPairToAffine returns the left component
of the pair, that is, the component of type Affinity, and analogously in
HomoAPPairToPrivacy. Method app in HomoPPrivacyToPrivacy checks
whether the input is d; if this is the case, then it returns pub, otherwise, the
result is priv.

graded class table The second part of the class table has grade annota-
tions which are values. Grade annotations could be generalized to be arbitrary
expressions; here we use this simpler assumption to make the presentation
lighter. We will write ⊢grade v̂ : C to abbreviate ∅ ⊢ v̂ : C and grade(C), where
these are judgments in the standard class table, and ⊢grade v̂ if ⊢grade v̂ : C for
some C, that is, v̂ is a grade value. Note that, since overloading is not allowed,
a grade class cannot be extended by another grade class. Hence, the grade
class of each grade value is uniquely determined.
In this class table, we have that the enriched method type, returned by

function mtype, and the conditions on the well-formedness of the class table,
are defined as at page 26, apart that grades are now values of grade classes,
and we must manage abstract and static methods. For the latter, we have to
add the following condition:

(t-st-meth) mtype(C,m) = 𝜏
v̂1
1 . . . 𝜏

v̂𝑛
𝑛 → T̂ implies

mbody(C,m) = ⟨x1 . . . x𝑛, e⟩ and
x1 :v̂1 𝜏1, . . . , x𝑛 :v̂𝑛 𝜏𝑛 ⊢ e : T̂

The class table is stratified in the sense that the second part can use classes
declared in the first part (the standard class table), but not conversely. Not-
ably, as said above, grade annotations in the second class table are values
typechecked in the standard part; moreover, standard classes can be used in
the annotated class table assuming everywhere an implicit trivial annotation,
that is, new Triv().
We explain now in detail how grade classes and grade homomorphism

classes declared in the standard class table define families of grade algebras
and direct refinements, as described in Section 4.1, so to obtain a grade al-
gebra of heterogeneous grades through the construction formally specified in
Section 4.2.

4.3 user-defined grades 55

kinds The kinds are the names of the grade classes, including the pre-
defined Nat and Triv.

grade algebras For all kinds C, the elements of the grade algebra 𝐻C

are the grade values of type C, and the partial order and the operations
in 𝐻C are defined in this way, where nf(e) denotes the normal form6 of e:

leq v̂1 ⪯ v̂2 if and only if nf(v̂1.leq(v̂2)) = true
sum v̂1 + v̂2 = nf(v̂1.sum(v̂2))
multiplication v̂1 · v̂2 = nf(v̂1.mul(v̂2))
zero 0 = nf(C.zero())
one 1 = nf(C.one())

direct refinement For all kinds C1,C2 we have that C1 ⊏
1 C2 if and

only if there exists a class D such that homo(D,C1,C2) holds
grade homomorphisms For all kinds C1,C2 such that C1 ⊏

1 C2, hence
homo(D,C1,C2) holds for some (unique) D, for all v̂ ∈ |𝐻C1 |, 𝐻C1,C2 (v̂) =
nf(D.app(v̂)).

Following the stratified approach, we expect typechecking to be performed
in two steps:

1. The standard class table, containing declarations of grade and homo-
morphism classes, is typechecked by the standard compiler.

2. Code containing grade annotations is typechecked accordingly to the
graded type system in Figure 4.3.

For the whole process to work correctly, the following are responsabilities
of the programmer:

• Code defining grades and their homomorphisms should be terminating
(that is, the normal forms of the method calls defining the partial order, the
operations and the application of a homomorphism should exist), since,
as described above, the second typechecking step requires to execute code
typechecked in the first step.

• Grade classes should satisfy the required axioms, e.g., the sum derived
from sum methods should be commutative and associative. The same
happens, for instance, in Haskell, when one defines instances of Functor
or Monad.

• The app method in homomorphism classes should satify the axioms
required to be a homomorphism.

Implementations could use in a parametric way auxiliary tools, notably a
termination checker to prevent divergence in methods implementing grades

6 Recall that, with the usual notations and terminology of reduction relations,→★ denotes
the transitive and reflexive closure of→, and e′ is a normal form of e if e →★ e′ and there
is no e′′ such that e′ → e′′. It is easy to see that the FJ reduction relation is deterministic,
hence the normal form of e, if any, is unique.

56 multi-graded featherweight java

and their homomorphisms, and/or a verifier to ensure that they provide the
required properties.

The graded type system used to typecheck the graded class table, reported
in Figure 4.3, is essentially the instantiation of the parametric graded type
system in Figure 3.2 on the grade algebra 𝐻 of heterogeneous grades obtained
from the user-defined grade and homomorphism classes, as illustrated above.
Hence, grades are grade values v̂, their partial order and operations are those
of 𝐻 , and the subtyping relation ≤𝐻 follows from the partial order relation
on grades. Moreover, the typing rule for the block has an additional side
condition, hightlighted in grey, checking that the annotation is actually a grade
value. Finally, there are (straightforward) rules for the additional constructs,
highlighted in grey.

4.3 user-defined grades 57

(t-sub)
𝛤 ⊢ e : T
𝛤 ′ ⊢ e : T ′

𝛤 ⪯𝐻 𝛤 ′

T ≤𝐻 T ′ (t-var)
x :𝜏 v̂ ⊢ x : 𝜏 v̂

v̂ ≠ 0𝐻

(t-field-access)
𝛤 ⊢ e : C v̂

𝛤 ⊢ e.f𝑖 : 𝜏 v̂ ·𝐻 v̂𝑖
𝑖

fields(C) = 𝜏
v̂1
1 f1; . . . 𝜏

v̂𝑛
𝑛 f𝑛;

𝑖 ∈ 1..𝑛

(t-new)
𝛤𝑖 ⊢ e𝑖 : 𝜏 v̂ ·𝐻 v̂𝑖

𝑖
∀𝑖 ∈ 1..𝑛

𝛤1 +𝐻 . . . +𝐻 𝛤𝑛 ⊢ new C (e1, . . . , e𝑛) : C v̂ fields(C) = 𝜏
v̂1
1 f1; . . . 𝜏

v̂𝑛
𝑛 f𝑛;

(t-invk)
𝛤0 ⊢ e0 : C v̂0 𝛤𝑖 ⊢ e𝑖 : 𝜏 v̂𝑖𝑖 ∀𝑖 ∈ 1..𝑛
𝛤0 +𝐻 . . . +𝐻 𝛤𝑛 ⊢ e0.m(e1, . . . , e𝑛) : 𝜏 v̂

mtype(C,m) = v̂0, 𝜏
v̂1
1 . . . 𝜏

v̂𝑛
𝑛 → 𝜏 v̂

(t-st-invk)
𝛤𝑖 ⊢ e𝑖 : 𝜏 v̂𝑖𝑖 ∀𝑖 ∈ 1..𝑛

𝛤0 +𝐻 . . . +𝐻 𝛤𝑛 ⊢ C .m(e1, . . . , e𝑛) : 𝜏 v̂
mtype(C,m) = 𝜏

v̂1
1 . . . 𝜏

v̂𝑛
𝑛 → 𝜏 v̂

(t-block)
𝛤 ⊢ e : 𝜏 v̂ 𝛤 ′, x :𝜏 v̂ ⊢ e′ : T
𝛤 +𝐻 𝛤 ′ ⊢ {𝜏 v̂ x = e; e′} : T

⊢grade v̂

(t-if)
𝛤 ⊢ e : booleanv̂ 𝛥 ⊢ e1 : T 𝛥 ⊢ e2 : T

𝛤 +𝐻 𝛥 ⊢ if (e) e1 else e2 : T

(t-instof)
𝛤 ⊢ e : Dv̂

𝛤 ⊢ e instanceof C : booleanv̂
(t-cast)

𝛤 ⊢ e : Dv̂

𝛤 ⊢ (C)e : C v̂
C ≤ D

(t-true)
⊢ true : booleanv̂

(t-false)
⊢ false : booleanv̂

(t-env)
⊢𝑎 v̂𝑖 : 𝜏𝑟𝑖𝑖 ∀𝑖 ∈ 1..𝑛

𝛤 ⊢𝑎 𝜌
𝛤 = x1 :𝑟1 𝜏1, . . . , x𝑛 :𝑟𝑛 𝜏𝑛

𝜌 = x1 ↦→ ⟨v̂1, 𝑟1⟩, . . . , x𝑛 ↦→ ⟨v̂𝑛, 𝑟𝑛⟩

(t-conf)
𝛥 ⊢ e : T̂ 𝛤 ⊢ 𝜌

𝛤 ⊢ e |𝜌 : T̂
𝛥 ⪯𝐻 𝛤

figure 4.3 Graded type system with user-defined grades

5
Beyond object-oriented and
small-steps

The previous chapters cover the main focus of the thesis, that is, the design of
a resource-aware extension for Java-like languages. To this end we provided,
for a paradigmatic Java-like calculus, a resource-aware small-step semantics
and a graded type-system, both parametric on an arbitrary grade algebra. We
proved resource-aware soundness, and, moreover, that the language can be
multigraded and grades can be user-defined. In this chapter we go beyond this
in two directions.
On the language side, here we consider an extended lambda calculus, in-

tended to be representative of typical features of functional programming
languages. This poses additional challenges with respect to the object-oriented
case, such as higher-order functions and structural types, including recursive
ones. As already mentioned, most literature on graded type systems considers
similar lambda calculi, however here, besides the fact that we do not add ad-hoc
syntax, as discussed in Section 2.3, we include in the calculus two important
constructs which are only marginally considered in the literature. First, we
provide an in-depth investigation of resource consumption in recursive func-
tions: roughly, the declaration of a function adds to the environment a resource
which needs to be graded so as to cover the possibile recursive calls; corres-
pondingly, a function which is recursive needs to be typed with an “infinite”
grade. Moreover, our graded type system smoothly includes equi-recursive
types, a feature which once again permits no syntax overhead.

On the foundational side, a significant difference is that the resource-aware
semantics is given here in big-step style, so that no annotations are needed. This
is again to follow the “no ad-hoc changes” principle mentioned in Section 2.3, at
a more technical level. Indeed, this is unimportant for the standard programmer,
but allows a cleaner and simpler way to analyse the behaviour of programs,
notably reasoning directly on source code. A consequence of this choice is that
proving and even expressing (resource-aware) soundness of the type system
becomes challenging, since in big-step semantics non-terminating and stuck
computations are indistinguishable, as shown by Cousot and Cousot [21] and
Leroy and Grall [42]. To solve this problem, the big-step judgment is extended
to model divergence explicitly, and is defined by a generalized inference system,
[3, 24]. Another technical improvement is that here we consider a more general
class of grade algebras, including non-affine grade algebras. So we can use,

59

60 beyond object-oriented and small-steps

e ::= x | rec f .𝜆x .e | e1e2 | expression
| unit | match e1 with unit → e2
| ⟨𝑟 e1, e2 ⟩𝑠 | match e1 with ⟨x, y⟩ → e2 |
| inl𝑟 e | inr𝑟 e |
| match e with inl x1 → e1 or inr x2 → e2

v ::= rec f .𝜆x .e | unit | ⟨𝑟v1, v2 ⟩𝑠 | inl𝑟v | inr𝑟v value
𝜌 ::= x1 ↦→ ⟨v1, 𝑟1⟩, . . . , x𝑛 ↦→ ⟨v𝑛, 𝑟𝑛⟩ environment

figure 5.1 Syntax

for instance, the natural numbers with exact usage and the linearity grade
algebras.
In Section 5.1 and Section 5.2 we present the resource-aware reduction,

and the type system, respectively. In Section 5.3 we prove resource-aware
soundness. We provide examples and discussions in Section 5.4.
In this chapter, we assume an integral grade algebra, see Definition 2.4.4.

Requiring R to be integral allows us to do some simplifications. In particular,
the fact that multiplying non-zero grades we cannot get 0 is used, e.g., in the
proof of Lemma 5.2.6(2).

5 . 1 Functional calculus and resource-aware
semantics

We define, for a standard functional calculus, an instrumented semantics which,
analogously to that defined in Section 3.2 for the Java-like calculus, keeps track
of resource usage, hence, in particular, gets stuck if some needed resource is
insufficient. However, in this case the semantics will be given in big-step style.

surface syntax The (surface) syntax is given in Figure 5.1. We assume
variables x, y, f , . . . , where the last will be used for variables denoting functions.

The constructs are pretty standard: the unit constant, pairs, left and right
injections, and three variants of match construct playing the role of destruct-
ors of units, pairs, and injections, respectively. Instead of standard lambda
expressions and a fix operator for recursion, we have a unique construct
rec f .𝜆x .e, meaning a function with parameter x and body e which can re-
cursively call itself through the variable f . Standard lambda expressions can be
recovered as those where f does not occur free in e, that is, when the function
is non-recursive, and we will use the abbreviation 𝜆x .e for such expressions.
The motivation for this unique construct is that in the resource-aware se-
mantics there is no immediate parallel substitution as in standard rules for
application and fix, but occurrences of free variables are replaced one at a
time, when needed, by their value stored in the environment. Thus, application

5.1 functional calculus and resource-aware semantics 61

of a (possibly recursive) function can be nicely modeled by generalizing what
expected for a non-recursive one, that is, it leads to the evaluation of the body
in an environment where both f and x are added as resources, as formalized
in rule (app) in Figure 5.5.

The pair and injection constructors are decorated with a grade for each sub-
term, intuitively meaning “how many copies” are contained in the compound
term. For instance, taking as grades the natural numbers as in Example 2.4.3(1),
a pair of shape ⟨2e1, e2 ⟩2 contains “two copies” of each component. In the
resource-aware semantics, this is reflected by the fact that, to evaluate (one
copy of) such pair, we need to obtain 2 copies of the results of e1 and e2; corres-
pondingly, when matching such result with a pair of variables, both are made
available in the environment with grade 2. This is analogous to annotations
of a constructor invocation in the FJ calculus, specifying how many copies
of each field should contain the object to be constructed. It is not mandatory
to have such annotations; we include them to have an additional language
feature, that is, to be able to express “data containers” whose subcomponents
are graded. In Chapter 3, instead, annotations also play a different role, that is,
are needed for all language operators to express the semantics in small-step
style.
We will sometimes use, rather than match e1 with unit → e2, the

alternative syntax e1;e2, emphasising that there is a sequential evaluation of
the two subterms.

resource-aware semantics by examples As in Section 3.2, the resource-
aware semantics is defined on configurations, that is, pairs e |𝜌 where 𝜌 is an
environment keeping track of the existing resources, that is, as shown in Fig-
ure 5.1, a finite map associating to each resource (variable), besides its value, a
grade modeling its allowed usage.
The judgment has shape e |𝜌 ⇒𝑟 v|𝜌 ′, meaning that the configuration e |𝜌

produces a value1 v and a final environment 𝜌 ′. As in the small-step case,
the reduction relation is graded, that is, indexed by a grade 𝑟 , the grade of a
variable in the environment decreases each time the variable is used, and, if
this is not possible, evaluation is stuck. However, in the big-step case, this is
formalized by the fact that no judgment can be derived.

The choice of big-step style is motivated since small-step style, as shown in
Section 3.2, needs a syntax where all constructs have a grade annotation for
each subterm, to ensure that all reduction steps have the same grade. Here,
instead, as said above, only constructs which model “data containers” (pair
and injection constructors) are decorated with grades for their components.

The instrumented semantics will be formally defined on a fine-grained [43]
version of expressions. However, first we illustrate its expected behaviour on
some simple examples in the surface syntax.

example 5.1.1 : Let us consider the following expressions:

1 Here we use the meta-variable v for values which are results, keeping v for value expressions,
as explained in the following.

62 beyond object-oriented and small-steps

𝜌 = p ↦→ ⟨v, 1⟩ with v = ⟨v1, v2⟩
𝜌 ′ = p ↦→ ⟨v, 0⟩,x ↦→ ⟨v1, 1⟩,y ↦→ ⟨v2, 1⟩
𝜌 ′′ = p ↦→ ⟨v, 0⟩,x ↦→ ⟨v1, 0⟩,y ↦→ ⟨v2, 1⟩

(var)
p|𝜌 ⇒ v|p : ⟨0, v⟩

. . .
(pair)

⟨unit,unit⟩ |𝜌 ′ ⇒ ⟨unit,unit⟩ |𝜌 ′
(match-p)

match p with ⟨x,y⟩ → ⟨unit,unit⟩ |𝜌 ⇒ ⟨unit,unit⟩ |𝜌 ′

(var)
p|𝜌 ⇒ v|p : ⟨v, 0⟩

(var)
x|𝜌 ′ ⇒ v1 |𝜌 ′′

(var)
x|𝜌 ′′ ⇒?

(pair)
⟨x,x⟩ |𝜌 ′ ⇒?

(match-p)
match p with ⟨x,y⟩ → ⟨x,x⟩ |𝜌 ⇒?

figure 5.2 Examples of resource-aware evaluation (counting usages)

• e1 = match p with ⟨x,y⟩ → ⟨unit,unit⟩
• e2 = match p with ⟨x,y⟩ → ⟨x,unit⟩
• e3 = match p with ⟨x,y⟩ → ⟨x,y⟩
• e4 = match p with ⟨x,y⟩ → ⟨x,x⟩

to be evaluated in the environment 𝜌 = p : ⟨v, 1⟩ with v = ⟨v1, v2⟩ . Assume,
first, that grades are natural numbers, see Example 2.4.3(1). In order to lighten
the notation, 1 annotations are considered default, hence omitted. In the
first proof tree in Figure 5.2 we show the evaluation of e1. The resource p is
consumed, and its available amount (1) is “transferred” to both the resources
x and y, which are added in the environment2, and not consumed.

The evaluation of e2 is similar, apart that the resource x is consumed as well,
and the evaluation of e3 consumes all resources. Finally, the evaluation of e4
is stuck, that is, no proof tree can be constructed: indeed, when the second
occurrence of x is found, the resource is exhausted, as shown in the second
(incomplete) proof tree in Figure 5.2. A result could be obtained, instead, if
the original grade of p was greater than 1 (e.g., 2), since in this case x (and y)
would be added with grade 2, or, alternatively, if the value associated to p in
the environment was, e.g., v = ⟨2v1, v2⟩ .

example 5.1.2 : Assume now that grades are privacy levels 0 ⪯ priv ⪯ pub
as in Example 3.2.3. We have, e.g., for 𝜌 = p : ⟨v, pub⟩ with v = ⟨privv1, v2⟩ , that
the evaluation in mode pub of e1 is analogous to that in Figure 5.2; however,
the evaluation in mode pub of e2, e3, and e4 is stuck, since it needs to use the
resource x, which gets a grade priv = priv · pub, hence cannot be used in mode
pub since pub ̸⪯ priv, as we show in the first (incomplete) proof tree for e2 in
Figure 5.3. On the other hand, evaluation in mode priv can be safely performed;
indeed, resource p can be used in mode priv since priv ⪯ pub, as shown in the
second proof tree in Figure 5.3.

2 Modulo renaming, omitted here for simplicity.

5.1 functional calculus and resource-aware semantics 63

𝜌 = p ↦→ ⟨v, pub⟩ with v = ⟨privv1, v2⟩
𝜌 ′ = p ↦→ ⟨v, pub⟩,x ↦→ ⟨v1, priv⟩,y ↦→ ⟨v2, pub⟩

p|𝜌 ⇒ v|p:⟨v, pub⟩

x|𝜌 ′ ⇒?

⟨x,unit⟩ |𝜌 ′ ⇒?

match p with ⟨x,y⟩ → ⟨x,unit⟩ |𝜌 ⇒?

p|𝜌 ⇒ v|p:⟨v, pub⟩

x|𝜌 ′ ⇒priv v1 |𝜌 ′ y|𝜌 ′ ⇒priv v2 |𝜌 ′

⟨x,y⟩ |𝜌 ′ ⇒priv ⟨v1, v2⟩ |𝜌 ′

match p with ⟨x,y⟩ → ⟨x,y⟩ |𝜌 ⇒priv ⟨v1, v2⟩ |𝜌 ′

figure 5.3 Examples of resource-aware evaluation (privacy levels)

v ::= x | rec f .𝜆x .e | unit | ⟨𝑟v1, v2 ⟩𝑠 value expression
| inl𝑟v | inr𝑟v

e ::= return v | let x = e1 in e2 | v1v2 (possibly diverging) expression
| match v with unit → e
| match v with ⟨x, y⟩ → e
| match v with inl x1 → e1 or inr x2 → e2

c ::= e |𝜌 configuration

figure 5.4 Fine-grained syntax

formal definition of resource-aware semantics As anticipated,
rules defining the instrumented semantics are given on a fine-grained version
of the language. This long-standing approach [43] is used to clearly separate
effect-free from effectful expressions (computations), and to make the evalu-
ation strategy, relevant for the latter, explicit through the sequencing construct
(let-in), rather than fixed a-priori. In our calculus, the computational ef-
fect is divergence, so the effectful expressions will be called possibly diverging,
whereas those effect-free will be called value expressions3. Note that, as cus-
tomary, possibly diverging expressions are defined on top of value expressions,
whereas the converse does not hold; such stratification will allow modularity
in the technical development, as will be detailed in the following.
The fine-grained syntax is shown in Figure 5.4. As said above, there are

two distinct syntactic categories of value expressions and possibly diverging
expressions. For simplicity we use the samemetavariable e of the surface syntax
for the latter, though the defining production is changed. This is justified by

3 They are often called just “values” in literature, though, as already noted by Levy, Power, and
Thielecke [43], they are not values in the operational sense, that is, results of the evaluation;
here we keep the two notions distinct. Values turn out to be value expressions with no free
variables, except that under a lambda.

64 beyond object-oriented and small-steps

the well-known fact that expressions of the surface language can be encoded
in the fine-grained syntax, by using the let-in construct, and the injection
of value expressions into expressions made explicit by the return keyword.

The resource-aware semantics is formally defined in Figure 5.5. Correspond-
ing to the two syntactic categories, such semantics is expressed by two distinct
judgments, v |𝜌 ⇒𝑟 v|𝜌 ′ in the top section, and c ⇒𝑟 v|𝜌 in the bottom section,
with the latter defined on top of the former. Hence, the metarules in Figure 5.5
can be equivalently seen as

• a unique inference system defining the union of the two judgments
• an inference system in the top section, defining v |𝜌 ⇒𝑟 v|𝜌 ′, and an
inference system in the bottom section, defining c ⇒𝑟 v|𝜌 , where the
previous judgment acts as a side condition.

For simplicity, we use the same notation for the two judgments, and in the
bottom section of Figure 5.5 we write both judgments as premises, taking the
first view. However, the second view will be useful later to allow a modular
technical development.

Rules for value expressions just replace variables by values; such reduction
cannot diverge, but is resource-consuming, hence can get stuck.

In particular, (var), the key rule where resources are consumed, is analogous
to the small-step version in Figure 3.3: a variable is replaced by its associated
value, its grade 𝑠 decreases to 𝑠′, burning an amount 𝑟 ′ of resource which has
to be at least the reduction grade, and the side condition 𝑟 ′ + 𝑠′ ⪯ 𝑠 ensures
that the initial grade allows to consume the 𝑟 ′ amount, leaving a residual grade
𝑠′. Differently from rule (var) in Figure 3.3, here 𝑟 can be zero. Indeed, the
constraint that consumption of a resource should be non-zero only holds when
value expressions are actually “used”, see below.

As already noted, the consumed amount is not required to be exactly 𝑟 ,
that is, there is no constraint that the semantics should not “waste” resources.
Hence, reduction is largely non-deterministic; it will be the responsibility of
the type system to ensure that there is at least one reduction which does not
get stuck. By looking at this rule it is worth to distinguish two interpretations
of the concept of “waste”. The first interpretation is that to waste means to
consume more than imposed by the grade on the arrow. Since this kind of
wasting depends on the order, it is possible to avoid it by using an algebra with,
as order, the equality; in this way 𝑟 ′ is equal to 𝑟 and so we consume exactly
the amount imposed by the arrow. The second interpretation is that to waste
means to consume all the resources we have in the environment. This kind of
waste is not avoidable in this system, since we do not impose any constraint
on the remaining resources. In the future work we plan to investigate how to
manage this kind of waste, as discussed more in details in Chapter 8.
The other rules for value expressions propagate rule (var) to subterms

which are variables. In rules for “data containers” (pair), (in-l), and (in-r),
the components are evaluated with the reduction grade of the compound
value expression, multiplied by that of the component. They are analogous to

5.1 functional calculus and resource-aware semantics 65

(var)
x |𝜌, x ↦→ ⟨v, 𝑠⟩ ⇒𝑟 v|𝜌, x ↦→ ⟨v, 𝑠′⟩

𝑟 ⪯ 𝑟 ′

𝑠′ + 𝑟 ′ ⪯ 𝑠

(fun)
rec f .𝜆x .e |𝜌 ⇒𝑟 rec f .𝜆x .e |𝜌

(unit)
unit|𝜌 ⇒𝑟 unit|𝜌

(pair)
v1 |𝜌 ⇒𝑟 ·𝑟1 v1 |𝜌1 v2 |𝜌1 ⇒𝑟 ·𝑟2 v2 |𝜌2

⟨𝑟1v1, v2 ⟩𝑟2 |𝜌 ⇒𝑟 ⟨𝑟1v1, v2 ⟩𝑟2 |𝜌2

(inl)
v |𝜌 ⇒𝑟 ·𝑠 v|𝜌 ′

inl𝑠v |𝜌 ⇒𝑟 inl𝑠v|𝜌 ′
(inl)

v |𝜌 ⇒𝑟 ·𝑠 v|𝜌 ′
inr𝑠v |𝜌 ⇒𝑟 inr𝑠v|𝜌 ′

(ret)
v |𝜌 ⇒𝑠 v|𝜌 ′

return v |𝜌 ⇒𝑟 v|𝜌 ′
𝑟 ⪯ 𝑠 ≠ 0

(let)

e1 |𝜌 ⇒𝑠 v|𝜌 ′′
e2 [x′/x] |𝜌 ′′, x′ ↦→ ⟨v, 𝑠⟩ ⇒𝑟 v′ |𝜌 ′

let x = e1 in e2 |𝜌 ⇒𝑟 v′ |𝜌 ′
x′ fresh

(app)

v1 |𝜌 ⇒𝑠 rec f .𝜆x .e |𝜌1 v2 |𝜌1 ⇒𝑡 v2 |𝜌2
e[f ′/f] [x′/x] |𝜌2, f ′ ↦→ ⟨rec f .𝜆x .e, 𝑠2⟩, x′ ↦→ ⟨v2, 𝑡⟩ ⇒𝑟 v|𝜌 ′

v1v2 |𝜌 ⇒𝑟 v|𝜌 ′
𝑠1 + 𝑠2 ⪯ 𝑠

𝑠1 ≠ 0
f ′, x′ fresh

(match-u)
v |𝜌 ⇒𝑠 unit|𝜌 ′′ e |𝜌 ′′ ⇒𝑟 v|𝜌 ′
match v with unit → e |𝜌 ⇒𝑟 v|𝜌

𝑠 ≠ 0

(match-p)

v |𝜌 ⇒𝑠 ⟨𝑟1v1, v2 ⟩𝑟2 |𝜌 ′′
e[x′/x] [y′/y] |𝜌 ′′, x′ ↦→ ⟨v1, 𝑠 · 𝑟1⟩, y′ ↦→ ⟨v2, 𝑠 · 𝑟2⟩ ⇒𝑟 v|𝜌 ′

match v with ⟨x, y⟩ → e |𝜌 ⇒𝑟 v|𝜌 ′
𝑠 ≠ 0
x′, y′ fresh

(match-l)

v |𝜌 ⇒𝑡 inl𝑠v|𝜌 ′′
e1 [y/x1] |𝜌 ′′, y ↦→ ⟨v, 𝑡 · 𝑠⟩ ⇒𝑟 v′ |𝜌 ′

match v with inl x1 → e1 or inr x2 → e2 |𝜌 ⇒𝑟 v′ |𝜌 ′
𝑡 ≠ 0
y fresh

(match-r)

v |𝜌 ⇒𝑡 inr𝑠v|𝜌 ′′
e2 [y/x1] |𝜌 ′′, y ↦→ ⟨v, 𝑡 · 𝑠⟩ ⇒𝑟 v′ |𝜌 ′

match v with inl x1 → e1 or inr x2 → e2 |𝜌 ⇒𝑟 v′ |𝜌 ′
𝑡 ≠ 0
y fresh

figure 5.5 Instrumented (big-step) reduction

66 beyond object-oriented and small-steps

rule (new-ctx) in Figure 3.3, where we reduce the subterms of a constructor
invocation with a grade that is the multiplication of the reduction grade of the
object to be constructed with the grade of the field.

Whereas evaluation of value expressions may have grade 0, when they are
actually used, that is, are subterms of possibly diverging expressions, they
should be evaluated with a non-zero grade, as required by a side condition in
the corresponding rules in the bottom section of Figure 5.5.

In rule (ret), the evaluation grade of the value expression should be enough
to cover the current evaluation grade. In rule (let), expressions e1 and e2 are
evaluated sequentially, the latter in an environment where the local variable x
has been added as available resource, modulo renaming with a fresh variable
to avoid clashes, with the value and grade obtained by the evaluation of e1.
In rule (app), an application v1v2 is evaluated by first consuming the re-

sources needed to obtain a value from v1 and v2, with the former expected to
be a (possibly recursive) function. Then, the function body is evaluated in an
environment where the function name and the parameter have been added
as available resources, modulo renaming with fresh variables. The function
should be produced in a “number of copies”, that is, with a grade 𝑠 , enough to
cover both all the future recursive calls (𝑠2) and the current use (𝑠1); in particu-
lar, for a non-recursive call, 𝑠2 could be 0. Instead, the current use should be
non-zero since we are actually using the function.
Note that 𝑠1 is arbitrary, and could not be replaced by a sound default

grade: notably, 1 would not work for grade algebras where there are grades
between 0 and 1, as it happens, e.g., for privacy levels. Note also that 𝑡 is
non-deterministically guessed. Note also that, in this rule as in others, there is
no required relation between the reduction grades of some premises (in this
case, 𝑠 and 𝑡) and that of the consequence, here 𝑟 . Of course, depending on
the choice of such grades, reduction could either proceed or get stuck due to
resource exhaustion; the role of the type system is exactly to show that there
is a choice which prevents the latter case.
Rules for match constructs, namely (match-u), (match-p), (match-l), and

(match-r), all follow the same pattern. The resources needed to obtain a value
from the value expression to be matched are consumed, and then the continu-
ation is evaluated. We can notice that, differently from some coeffect systems,
here we do not include coeffects on pattern matching, but we have the same
result by reducing the value to be matched with the desired reduction grade
since this reduction grade is free. In rule (match-u), there is no value-passing
from the matching expression to the continuation, hence their evaluation
grades are independent. In rule (match-p), instead, the continuation is eval-
uated in an environment where the two variables in the pattern have been
added as available resources, again modulo renaming. The values associated to
the two variables are that of the corresponding component of the expression
to be matched, whereas the grades are the evaluation grade of such expression,
multiplied by the grade of the component. Rules (match-l) and (match-r) are
analogous.

5.1 functional calculus and resource-aware semantics 67

y | ⟨𝑟0,𝑠0,1⟩⇒u | ⟨𝑟1,𝑠0,1⟩

f | ⟨𝑟1,𝑠0,1⟩⇒𝑠0div | ⟨𝑟1,0,1⟩ x | ⟨𝑟1,0,1⟩⇒u | ⟨𝑟1,0,0⟩

. . .

(app)
y;f x | ⟨𝑟1,𝑠1,1⟩⇒?

(app)
f x | ⟨𝑟1,𝑠0,1⟩⇒?

(match-u)
y;f x | ⟨𝑟0,𝑠0,1⟩⇒?

figure 5.6 Example of resource-aware evaluation: consumption/divergency

Besides the standard typing errors, evaluation graded 𝑟 can get stuck (form-
ally, no judgment can be derived) when rule (var) cannot be applied since the
side conditions do not hold. Informally, some resource (variable) is exhausted,
that is, can no longer be replaced by its value. Also note that the instrumented
reduction is non-deterministic, due to rule (var). That is, when a resource is
needed, it can be consumed in different ways; hence, soundness of the type
system will be soundness-may, meaning that there exists a computation which
does not get stuck.

We end this section by illustrating resource consumption in a non-terminating
computation.

example 5.1.3 : Consider the function div = rec f .𝜆x .y;f x, which clearly
diverges on any argument, by using infinitelymany times the external resource y.
In Figure 5.6 we show the (incomplete) proof tree for the evaluation of an
application y;f x, in an environment where f denotes the function div, and y
and x denote unit. For simplicity, as in previous examples, we omit 1 grades,
and renaming of variables; moreover, we abbreviate by ⟨𝑟,𝑠,𝑡⟩ the environ-
ment y ↦→ ⟨unit, 𝑟 ⟩, f ↦→ ⟨div, 𝑠⟩, x ↦→ ⟨unit, 𝑡⟩ , and we omit the label in
applications of meta-rule (var).

In this way, we can focus on the key feature the (tentative) proof tree shows:
the body of div is evaluated infinitely many times, in a sequence of envir-
onments, starting from the root, where the grades of the external resource y,
assuming that each time it is consumed by 1, are as follows:

𝑟0 = 𝑟1 + 1 𝑟1 = 𝑟2 + 1 . . . 𝑟𝑘 = 𝑟𝑘+1 + 1 . . .

In the case of the resource f , at each recursive call, the function must be
produced with a grade which is the sum of its current usage (assumed again
to be 1) and the grade which will be associated to (a fresh copy of) f in the
environment, to evaluate the body. As a consequence, we also get:

𝑠0 = 𝑠1 + 1 𝑠1 = 𝑠2 + 1 . . . 𝑠𝑘 = 𝑠𝑘+1 + 1 . . .

Let us now see what happens depending on the underlying grade algebra,
considering y (an analogous reasoning applies to f). Taking the grade algebra
of natural numbers of Example 2.4.3(1), it is easy to see that the above sequence
of constraints can be equivalently expressed as:

𝑟1 = 𝑟0 − 1 𝑟2 = 𝑟1 − 1 . . . 𝑟𝑘+1 = 𝑟𝑘 − 1 . . .

68 beyond object-oriented and small-steps

𝜎, 𝜏 ::= T →𝑠 S | Unit | T ⊗ S | T + S non-graded type
S, T ::= 𝜏𝑟 graded type
𝛤, 𝛥 ::= x1 :𝑟1 𝜏1, . . . , x𝑛 :𝑟𝑛 𝜏𝑛 (type-and-coeffect) context

figure 5.7 Types and (type-and-coeffect) contexts

Thus, in a finite number of steps, the grade of y in the environment becomes
0, hence the proof tree cannot be continued since we can no longer extract
the associated value by rule (var). In other words, the computation is stuck
due to resource consumption.

Assume now to take, instead, natural numbers extended with ∞, as defined
in Example 2.4.3(7). In this case, if we start with 𝑟0 = ∞, intuitively meaning
that y can be used infinitely many times, evaluation can proceed forever by
taking 𝑟𝑘 = ∞ for all 𝑘 . The same happens if we take a non-quantitative
grade algebra, e.g., that of privacy levels; we can have 𝑟𝑘 = pub for all 𝑘 .
However, interpreting the rules in Figure 5.5 in the standard inductive way, the
semantics we get does not formalize such non-terminating evaluation, since
we only consider judgments with a finite proof tree. We will see in Section 5.3
how to extend the semantics to model non-terminating computations as well.

5 .2 Resource-aware type system
Types, defined in Figure 5.7, are those expected for the constructs in the
syntax: functional, Unit, (tensor) product, sum, and (equi-)recursive types,
obtained by interpreting the productions coinductively, so that infinite4 terms
are allowed. However, they are graded, that is, decorated with a grade, and the
type subterms are graded. Moreover, accordingly with the fact that functions
are possibly recursive, arrows in functional types are decorated with a grade
as well, called recursion grade in the following, expressing the recursive usage
of the function; thus, functional types decorated with 0 are non-recursive.
(Type-and-coeffect) contexts, and their partial order and operations, are

defined as in Section 3.3:

∅ ⪯ ∅
x :𝑠 𝜏, 𝛤 ⪯ x :𝑟 𝜏, 𝛥 if 𝑠 ⪯ 𝑟 and 𝛤 ⪯ 𝛥

𝛤 ⪯ x :𝑟 𝜏, 𝛥 if x ∉ dom(𝛤) and 𝛤 ⪯ 𝛥 and 0 ⪯ 𝑟

The partial order is obtained by lifting the corresponding operations on coef-
fect contexts, which are the pointwise extension of those on coeffects. The
difference with respect to the definition of Section 3.3 is that in the third clause
there is an additional condition: if a variable is present only in the right context,
its grade should be greater or equal than zero. Indeed, if the variable is not
present on the left, then its coffect is implicitly assumed to be zero. In the
affine grade algebras we consider in Chapter 3 and Chapter 4, this condition

4 More precisely, regular terms, that is, those with finitely many distinct subterms.

5.2 resource-aware type system 69

(t-sub-v)
𝛤 ⊢ v : 𝜏𝑟

𝛤 ′ ⊢ v : 𝜏𝑠
𝛤 ⪯ 𝛤 ′

𝑠 ⪯ 𝑟
(t-var)

x :𝑟 𝜏 ⊢ x : 𝜏𝑟

(t-fun)
𝛤, f :𝑠 𝜏𝑟11 →𝑠 𝜏

𝑟2
2 , x :𝑟1 𝜏1 ⊢ e : 𝜏

𝑟2
2

𝑟 · 𝛤 ⊢ rec f .𝜆x .e : (𝜏𝑟11 →𝑠 𝜏
𝑟2
2)𝑟

(t-unit) ⊢ unit : Unit𝑟

(t-pair)
𝛤1 ⊢ v1 : 𝜏𝑟11 𝛤2 ⊢ v2 : 𝜏𝑟22

𝑟 · (𝛤1 + 𝛤2) ⊢ ⟨𝑟1v1, v2 ⟩𝑟2 : (𝜏𝑟11 ⊗ 𝜏
𝑟2
2)𝑟

(t-inl)
𝛤 ⊢ v : 𝜏𝑟11

𝑟 · 𝛤 ⊢ inl𝑟1v : (𝜏𝑟11 + 𝜏𝑟22)𝑟
(t-inr)

𝛤 ⊢ v : 𝜏𝑟22
𝑟 · 𝛤 ⊢ inr𝑟2v : (𝜏𝑟11 + 𝜏𝑟22)𝑟

(t-sub)
𝛤 ⊢ e : 𝜏𝑟
𝛤 ′ ⊢ e : 𝜏𝑠

𝛤 ⪯ 𝛤 ′

𝑠 ⪯ 𝑟
(t-ret)

𝛤 ⊢ v : 𝜏𝑟

𝛤 ⊢ return v : 𝜏𝑟
𝑟 ≠ 0

(t-let)
𝛤1 ⊢ e1 : 𝜏𝑟11 𝛤2, x :𝑟1 𝜏1 ⊢ e2 : 𝜏

𝑟2
2

𝛤1 + 𝛤2 ⊢ let x = e1 in e2 : 𝜏𝑟22

(t-app)
𝛤1 ⊢ v1 : (𝜏𝑟11 →𝑠 𝜏

𝑟2
2) (𝑟+𝑟 ·𝑠) 𝛤2 ⊢ v2 : 𝜏

𝑟 ·𝑟1
1

𝛤1 + 𝛤2 ⊢ v1v2 : 𝜏𝑟 ·𝑟22
𝑟 ≠ 0

(t-match-u)
𝛤1 ⊢ v : Unit𝑟 𝛤2 ⊢ e : T

𝛤1 + 𝛤2 ⊢ match v with unit → e : T
𝑟 ≠ 0

(t-match-p)
𝛤1 ⊢ v : (𝜏𝑟11 ⊗ 𝜏

𝑟2
2)𝑟 𝛤2, x :𝑟 ·𝑟1 𝜏, y :𝑟 ·𝑟2 𝜏2 ⊢ e : T

𝛤1 + 𝛤2 ⊢ match v with ⟨x, y⟩ → e : T
𝑟 ≠ 0

(t-match-in)
𝛤1 ⊢ v : (𝜏𝑟11 + 𝜏𝑟22)𝑟 𝛤2, x :𝑟 ·𝑟1 𝜏1 ⊢ e1 : T 𝛤2, x :𝑟 ·𝑟2 𝜏2 ⊢ e2 : T

𝛤1 + 𝛤2 ⊢ match v with inl x → e1 or inr x → e2 : T
𝑟 ≠ 0

figure 5.8 Graded type system

is satisfied by definition, whereas here we have to explicitly forbid to add a
variable with a grade non-comparable with zero, such as, e.g., a linear variable.

In Figure 5.8, we give the typing rules, which are parameterized on the
underlying grade algebra. As for instrumented reduction, the resource-aware
type system is formalized by two judgments, 𝛤 ⊢ v : T and 𝛤 ⊢ e : T , for
values and possibly diverging expressions, respectively. However, differently
from reduction, the two judgments are mutually recursive, due to rule (t-fun),
hence the metarules in Figure 5.8 define a unique judgment which is their
union. We only comment the most significant points.

Rules (t-sub-v) and (t-sub) are as rule (t-sub) in Figure 3.2, with the differ-
ence that here subtyping checks only the grades.

Rule (t-var) is analogous to that in Figure 3.2. Notably, the variable can get
an arbitrary grade 𝑟 , provided that the context is multiplied by 𝑟 . The same
“local promotion” can be applied in the following rules in the top section.

70 beyond object-oriented and small-steps

(t-var)
y :𝑟 ′ U ⊢ y : U𝑟

′

(t-var)
f :𝑟+𝑟 ·𝑠 𝜏 ⊢ f : 𝜏𝑟+𝑟 ·𝑠

(t-var)
x :𝑟 ·𝑟1 U ⊢ x : U𝑟 ·𝑟1

𝑟 ≠ 0 (t-app)
f :𝑟+𝑟 ·𝑠 𝜏, x :𝑟 ·𝑟1 U ⊢ f x : U𝑟 ·𝑟2

𝑟 ′ ≠ 0 (t-match-u)
y :𝑟 ′ U, f :𝑟+𝑟 ·𝑠 𝜏, x :𝑟 ·𝑟1 U ⊢ y;f x : U𝑟 ·𝑟2 (𝑟 + 𝑟 · 𝑠) ⪯ 𝑠

𝑟 · 𝑟1 ⪯ 𝑟1 𝑟2 ⪯ 𝑟 · 𝑟2
(t-sub)

y :𝑟 ′ U, f :𝑠 𝜏, x :𝑟1 U ⊢ y;f x : U𝑟2
(t-fun) 𝜏 = U𝑟1 →𝑠 U

𝑟2

y :𝑟 ′ U ⊢ rec f .𝜆x .y;f x : 𝜏

figure 5.9 Example of type derivation: recursive function

In rule (t-fun), a (possibly recursive) function can get a graded functional
type, provided that its body can get the result type in the context enriched by
assigning the functional type to the function name, and the parameter type
to the parameter. As mentioned, we expect the recursion grade 𝑠 to be 0 for a
non-recursive function; for a recursive function, we expect 𝑠 to be an “infinite”
grade, in a sense which will be clarified in Example 5.2.1 below.
As in reduction rules in Figure 5.5, in the rules in the top section there is

no constraint that the reduction grade should be non-zero; however, in the
rules in the bottom section, when a value expression is used as subterm of
a possibly diverging expression, its grade is required to be non-zero, since it
is evaluated in the computation, hence its resource consumption should be
taken into account.
In rule (t-app), the function should be produced with a grade which is the

sum of that required for the current usage (𝑟) and that corresponding to the
recursive calls: the latter are the grade required for a single usage multiplied
by the recursion grade (𝑠). For a non-recursive function (𝑠 = 0), the rule turns
out to be as expected for a usual application.

example 5.2.1 : As an example of type derivation, we consider the function
div = rec f .𝜆x .y;f x introduced in Example 5.1.3. In Figure 5.9, we show a
(parametric) proof tree deriving for div a type of the shape (Unit𝑟1 →𝑠

Unit𝑟2) , in a context providing the external resource y. Consider, first of all,
the condition that the recursion grade 𝑠 should satisfy, that is (𝑟 + 𝑟 · 𝑠) ⪯ 𝑠 ,
for some 𝑟 ≠ 0, meaning that it should be enough to cover the recursive call
in the body and all the further recursive calls.5. Assuming the grade algebra
of natural numbers of Example 2.4.3(1), there is no grade 𝑠 satisfying this
condition. In other words, the type system correctly rejects the function since
its application would get stuck due to resource consumption, as illustrated
in Example 5.1.3. On the other hand, for, e.g., 𝑠 = ∞, with natural numbers
extended as in Example 2.4.3(7), (𝑟 + 𝑟 · 𝑠) ⪯ 𝑠 would hold for any 𝑟 ≠ 0, hence
the function would be well-typed. Moreover, there would be no constraints on
the parameter and return type, since the conditions 𝑟 · 𝑟1 ⪯ 𝑟1 and 𝑟2 ⪯ 𝑟 · 𝑟2
would be always satified taking 𝑟 = 1. Assuming the grade algebra of privacy

5 Note that 𝑟 is arbitrary, since there is no sound default grade, and it is only required to be
non-zero since the function is used.

5.2 resource-aware type system 71

levels introduced in Example 3.2.3, where 1 = pub, for 𝑠 = pub the condition
is satisfied, again with no constraints on 𝑟1 and 𝑟2. For 𝑠 = priv, instead, it only
holds for 𝑟 = priv, hence the condition 𝑟2 ⪯ 𝑟 · 𝑟2 prevents the return type of
the function to be pub, accordingly with the intuition that a function used in
priv mode cannot return a pub result. In such cases, the type system correctly
accepts the function since its application to a value never gets stuck. Finally
note that, to type an application of the function, e.g., to derive that divu has
type U𝑟2 , div should get grade 1 + 𝑠 , hence the grade of the external resource y
should be (1 + 𝑠) · 𝑟 ′, that is, it should be usable infinitely many times as well.

A similar reasoning applies in general; namely, for recursive calls in a
function’s body we get a condition of the shape (𝑟 + 𝑟 · 𝑠) ⪯ 𝑠 , with 𝑟 ≠ 0,
forcing the grade 𝑠 of the function to be “infinite”. This happens regardless of
the fact that the recursive function is always diverging, as in the example above,
or terminating on some/all arguments. On the other hand, in the latter case
the resource-aware semantics terminates, as expected, provided that the initial
amount of resources is enough to cover the (finite number of) recursive calls.
This is perfectly reasonable, since the type system is a static overapproximation
of the evaluation. We will show an example of this terminating resource-aware
evaluation in Section 5.4 (Figure 5.15).

The following lemmas show that the promotion rule, usually explicitly
stated in graded type systems, is admissible in our system (Lemma 5.2.6), and
also a converse holds for value expressions (Lemma 5.2.7). We chose not to
have an explicit promotion rule for the sake of simplicity in proofs, in fact,
in this way we have one rule less. Note that we can promote an expression
only using a non-zero grade, to ensure that non-zero constraints on grades
in typing rules for expressions are preserved.6 These lemmas also show that
we can assign to a value expression any grade provided that the context is
appropriately adjusted: by demotion we can always derive 1 (taking 𝑟 = 1)
and then by promotion any grade.

lemma 5.2.2 (Inversion for value expressions):

1. If 𝛤 ⊢ x : 𝜏𝑟 then x :𝑟 ′ 𝜏 ⪯ 𝛤 and 𝑟 ⪯ 𝑟 ′.

2. If 𝛤 ⊢ rec f .𝜆x .e : 𝜏𝑟 then 𝑟 ′ · 𝛤 ′ ⪯ 𝛤 and 𝜏 = 𝜏
𝑟1
1 → 𝑠𝜏

𝑟2
2 such that

𝛤 ′, f :𝑠 𝜏𝑟11 → 𝑠𝜏
𝑟2
2 , x :𝑟1 𝜏1 ⊢ e : 𝜏

𝑟2
2 and 𝑟 ⪯ 𝑟 ′.

3. If 𝛤 ⊢ unit : 𝜏𝑟 then 𝜏 = Unit and ∅ ⪯ 𝛤 .

4. If 𝛤 ⊢ ⟨𝑟1v1, v2 ⟩𝑟2 : 𝜏𝑟 then 𝑟 ′ · (𝛤1 + 𝛤2) ⪯ 𝛤 , 𝜏 = 𝜏
𝑟1
1 ⊗ 𝜏

𝑟2
2 and 𝑟 ⪯ 𝑟 ′ such

that 𝛤1 ⊢ v1 : 𝜏𝑟11 , 𝛤2 ⊢ v2 : 𝜏
𝑟2
2 .

5. If 𝛤 ⊢ inl𝑟1v : 𝜏𝑟 then 𝑟 ′ · 𝛤 ′ ⪯ 𝛤 , 𝜏 = 𝜏
𝑟1
1 + 𝜏

𝑟2
2 and 𝑟 ⪯ 𝑟 ′ such that

𝛤 ′ ⊢ v : 𝜏𝑟11 .

6 Without assuming the grade algebra to be integral, we would need to use grades which are
not zero-divisors.

72 beyond object-oriented and small-steps

6. If 𝛤 ⊢ inr𝑟2v : 𝜏𝑟 then 𝑟 ′ · 𝛤 ′ ⪯ 𝛤 , 𝜏 = 𝜏
𝑟1
1 + 𝜏

𝑟2
2 and 𝑟 ⪯ 𝑟 ′ such that

𝛤 ′ ⊢ v : 𝜏𝑟22 .

lemma 5.2.3 (Inversion for possibly diverging expressions):

1. If 𝛤 ⊢ return v : 𝜏𝑟 then 𝛤 ′ ⊢ v : 𝜏𝑟 ′ with 𝑟 ⪯ 𝑟 ′, 𝛤 ′ ⪯ 𝛤 and 𝑟 ′ ≠ 0.

2. If 𝛤⊢let x = e1 in e2 : 𝜏𝑟 then 𝛤1⊢e1 : 𝜏𝑟11 and 𝛤2, x :𝑟1 𝜏1⊢e2 : 𝜏𝑟 ′ and
𝛤1 + 𝛤2 ⪯ 𝛤 and 𝑟 ⪯ 𝑟 ′.

3. If 𝛤 ⊢ v1v2 : 𝜏𝑟2 then 𝛤1 + 𝛤2 ⪯ 𝛤 and 𝑟 ⪯ 𝑟 ′ · 𝑟2 such that 𝛤1 ⊢ v1 : (𝜏𝑟11 →
𝑠𝜏
𝑟2
2)𝑟

′+𝑟 ′ ·𝑠 and 𝛤2 ⊢ v2 : 𝜏𝑟
′ ·𝑟1

1 and 𝑟 ′ ≠ 0.

4. If 𝛤⊢match v with unit → e : 𝜏𝑟 then 𝛤1+𝛤2⪯𝛤 and 𝑟⪯𝑡 such that
𝛤1⊢v : Unit𝑟 ′ and 𝛤2⊢e : 𝜏𝑡 .

5. If 𝛤 ⊢ match v with ⟨x, y⟩ → e : 𝜏𝑟 then 𝛤1 + 𝛤2 ⪯ 𝛤 and 𝑟 ⪯ 𝑡 such
that 𝛤1 ⊢ v : (𝜏𝑟11 ⊗ 𝜏

𝑟2
2)𝑠 and 𝛤2, x :𝑠 ·𝑟1 𝜏, y :𝑠 ·𝑟2 𝜏2 ⊢ e : 𝜏𝑡 and 𝑠 ≠ 0.

6. If 𝛤 ⊢ match v with inl x → e1 or inr x → e2 : 𝜏𝑟 then 𝛤1 + 𝛤2 ⪯
𝛤 and 𝑟 ⪯ 𝑠 such that 𝛤1 ⊢ v : (𝜏𝑟11 + 𝜏

𝑟2
2)𝑟

′ , 𝛤2, x :𝑟 ′ ·𝑟1 𝜏1 ⊢ e1 : 𝜏𝑠 ,
𝛤2, x :𝑟 ′ ·𝑟2 𝜏2 ⊢ e2 : 𝜏𝑠 and 𝑟 ′ ≠ 0.

lemma 5.2.4 (Canonical Forms):

1. If 𝛤 ⊢ v : (𝜏𝑟11 → 𝑠𝜏
𝑟2
2)𝑟3 then v = rec f .𝜆x .e.

2. If 𝛤 ⊢ v : Unit then v = unit.

3. If 𝛤 ⊢ v : (𝜏𝑟11 ⊗ 𝜏
𝑟2
2)𝑟3 then v = ⟨𝑟1v1, v2 ⟩𝑟2 .

4. If 𝛤 ⊢ v : (𝜏𝑟11 + 𝜏𝑟22)𝑟 then v = inl𝑟1v1 or v = inr𝑟2v2.

lemma 5.2.5 (Renaming): If 𝛤, x :𝑟1 𝜏1 ⊢ e : 𝜏𝑟22 then 𝛤, x′ :𝑟1 𝜏1 ⊢ e[x′/x] :
𝜏
𝑟2
2 with x′ fresh.

lemma 5.2.6 (Promotion):

1. If 𝛤 ⊢ v : 𝜏𝑟 then 𝑠 · 𝛤 ⊢ v : 𝜏𝑠 ·𝑟

2. If 𝛤 ⊢ e : 𝜏𝑟 and 𝑠 ≠ 0, then 𝑠 · 𝛤 ⊢ e : 𝜏𝑠 ·𝑟 .

Proof: By induction on the typing rules. We show only some cases.

(t-sub-v) We have 𝛥 ⊢ v : 𝜏𝑠′ , 𝛤 ⊢ v : 𝜏𝑟 , 𝑟 ⪯ 𝑠′ and 𝛥 ⪯ 𝛤 . By induction
hypothesis 𝑠 ·𝛥 ⊢ v : 𝜏𝑠 ·𝑠′ . By monotonicity 𝑠 · 𝑟 ⪯ 𝑠 · 𝑠′ and 𝑠 ·𝛥 ⪯ 𝑠 · 𝛤 ,
so, by (t-sub) we get 𝑠 · 𝛤 ⊢ e : 𝜏𝑠 ·𝑟 , that is, the thesis.

(t-var) By rule (t-var) we get the thesis.
(t-fun) We have 𝛤 = 𝑟 · 𝛤 ′, v = rec f .𝜆x .e′, 𝜏 = 𝜏

𝑟1
1 → 𝑠′𝜏𝑟22 and

𝛤 ′, f :𝑠′ 𝜏𝑟11 → 𝑠′𝜏𝑟22 , x :𝑟1 𝜏1 ⊢ e′ : 𝜏
𝑟2
2 . By rule (t-fun), (𝑠 ·𝑟) ·𝛤 ′ ⊢ v : 𝜏𝑠 ·𝑟 .

From (𝑠 · 𝑟) · 𝛤 ′ = 𝑠 · (𝑟 · 𝛤 ′) = 𝑠 · 𝛤 we get the thesis.
(t-pair) , (t-inl) and (t-inr) Similar to (t-fun).
(t-sub) We have 𝛥 ⊢ e : 𝜏𝑠′ , 𝛤 ⊢ e : 𝜏𝑟 , 𝑟 ⪯ 𝑠′ and 𝛥 ⪯ 𝛤 . By induction

5.2 resource-aware type system 73

hypothesis 𝑠 · 𝛥 ⊢ e : 𝜏𝑠 ·𝑠′ . By monotonicity 𝑠 · 𝑟 ⪯ 𝑠 · 𝑠′ and 𝑠 · 𝛥 ⪯ 𝑠 · 𝛤 ,
so, by (t-sub) we get 𝑠 · 𝛤 ⊢ e : 𝜏𝑠 ·𝑟 , that is, the thesis.

(t-app) We have 𝛤1 + 𝛤2 ⊢ v1v2 : 𝜏𝑟
′ ·𝑟2

2 . By induction hypothesis 𝑠 · 𝛤1 ⊢
v1 : (𝜏𝑟11 → 𝑠′𝜏𝑟22)𝑠 · (𝑟

′+𝑟 ′ ·𝑠′) and 𝑠 · 𝛤2 ⊢ v2 : 𝜏𝑠 ·𝑟 ′ ·𝑟1 . Since 𝑠 ≠ 0 and
𝑟 ′ ≠ 0 and, since the algebra is integral, 𝑠 · 𝑟 ≠ 0. By rule (t-app),
𝑠 · (𝛤1 + 𝛤2) ⊢ v1v2 : 𝜏𝑠 ·𝑟

′ ·𝑟2
2 , that is, the thesis.

(t-match-p) By induction hypothesis 𝑠 · 𝛤1 ⊢ v : (𝜏𝑟11 ⊗ 𝜏
𝑟2
2)𝑠 ·𝑠

′ and 𝑠 ·
𝛤2, x :(𝑠 ·𝑠′) ·𝑟1 𝜏, y :(𝑠 ·𝑠′) ·𝑟2 𝜏2 ⊢ e : 𝜏𝑠 ·𝑟 . Since 𝑠 ≠ 0 and 𝑠′ ≠ 0 and, since
the algebra is integral, 𝑠 · 𝑠′ ≠ 0. By rule (t-match-p), 𝑠 · (𝛤1 + 𝛤2) ⊢
match v with ⟨x, y⟩ → e : 𝜏𝑠 ·𝑟 , that is, the thesis.

□

lemma 5.2.7 (Demotion): If 𝛤 ⊢ v : 𝜏𝑠 ·𝑟 then 𝑠 · 𝛤 ′ ⪯ 𝛤 and 𝛤 ′ ⊢ v : 𝜏𝑟 , for
some 𝛤 ′ .

Proof: By case analysis on v. We show only some cases.

v = x By Lemma 5.2.2(1) x :𝑟 ′ 𝜏 ⪯ 𝛤 and 𝑠 · 𝑟 ⪯ 𝑟 ′. Let 𝛤 ′ = x :𝑟 𝜏 . By
monotonicity of · and, by transitivity of ⪯, (𝑠 · 𝑟) · x :1 𝜏 = 𝑠 · 𝛤 ′ ⪯ 𝛤 .
By (t-var) 𝛤 ′ ⊢ x : 𝜏𝑟 .

v = ⟨𝑟 1 v1 , v2 ⟩𝑟 2 By Lemma 5.2.2(4) 𝑟 ′ · (𝛤1 + 𝛤2) ⪯ 𝛤 and 𝑠 · 𝑟 ⪯ 𝑟 ′ and
𝛤1 ⊢ v1 : 𝜏𝑟11 and 𝛤2 ⊢ v2 : 𝜏𝑟22 . Let 𝛤 ′ = 𝑟 · (𝛤1 + 𝛤2). By monotonicity of ·
and by transitivity of ⪯ we have 𝑠 · 𝛤 ′ ⪯ 𝛤 . By (t-pair) 𝛤 ′ ⊢ v : 𝜏𝑟 .

□

lemma 5.2.8 (Substitution lemma): If 𝛤, x :𝑟 𝜏 ′ ⊢ e : 𝜏𝑠 and 𝛥 ⊢ v : 𝜏 ′𝑟 then
and 𝛤 + 𝛥 ⊢ e[v/x] : 𝜏𝑟

Proof: By induction on the structure of e. For the sake of brevity we will
show only one case, other ones are analogous:

• e = let y = e1 in e2
By Lemma 5.2.3(2) we have 𝛤1, x :𝑡1 𝜏 ′ ⊢ e1 : 𝜏

𝑟1
1 and 𝛤2, x :𝑡2 𝜏 ′, y :𝑟1 𝜏1 ⊢

e2 : 𝜏𝑠
′ and 𝛤1, x :𝑡1 𝜏 ′ + 𝛤2, x :𝑡2 𝜏 ′ ⪯ 𝛤, x :𝑟 𝜏 ′ and 𝑠 ⪯ 𝑠′ and 𝑡1 + 𝑡2 ⪯ 𝑟 .

By applying Lemma 5.2.7 and Lemma 5.2.6 we have 𝑡1 · 𝛥′ ⊢ v : 𝜏 ′𝑡1
and 𝑡2 · 𝛥′ ⊢ v : 𝜏 ′𝑡2 with 𝑟 · 𝛥′ ⪯ 𝛥. By induction hypothesis we have
𝛤1 + 𝑡1 · 𝛥′ ⊢ e1 [v/x] : 𝜏𝑟11 and 𝛤2, y :𝑟1 𝜏1 + 𝑡2 · 𝛥′ ⊢ e2 [v/x] : 𝜏𝑠′ . By
applying (t-let)we have 𝛤1+(𝛤2, y :𝑟1 𝜏1)+ (𝑡1 ·𝛥′)+ (𝑡2 ·𝛥′) ⊢ (let y =

e1 in e2) [v/x] : 𝜏𝑠 . We have 𝑡1 ·𝛥′+𝑡2𝛥′ = (𝑡1+𝑡2 ·𝛥′ ⪯ 𝑟 ·𝛥′ ⪯ 𝛥 so, by
rule (t-sub), we have 𝛤1+(𝛤2, y :𝑟1 𝜏1)+𝛥 ⊢ (let y = e1 in e2) [v/x] : 𝜏𝑠 ,
that is, the thesis.

□

In Figure 5.10 we give the typing rules for environments and configurations.
In the rules, 𝛤 is the context whose domain is the domain of the environment

74 beyond object-oriented and small-steps

(t-env)
𝛤𝑖 ⊢ v𝑖 : 𝜏1𝑖 ∀𝑖 ∈ 1..𝑛

𝛤 ⊢ 𝜌 ⊲ 𝑟1 · 𝛤1 + . . . + 𝑟𝑛 · 𝛤𝑛

𝛤 = x1 :𝑟1 𝜏1, . . . , x𝑛 :𝑟𝑛 𝜏𝑛

𝜌 = x1 ↦→ ⟨v1, 𝑟1⟩, . . . , x𝑛 ↦→ ⟨v𝑛, 𝑟𝑛⟩
(𝑟1 · 𝛤1 + . . . + 𝑟𝑛 · 𝛤𝑛) ⪯• 𝛤

(t-vconf)
𝛥 ⊢ v : T 𝛤 ⊢ 𝜌 ⊲ 𝛤

𝛤 ⊢ v |𝜌 : T
𝛤 + 𝛥 ⪯• 𝛤

(t-conf)
𝛥 ⊢ e : T 𝛤 ⊢ 𝜌 ⊲ 𝛤

𝛤 ⊢ e |𝜌 : T
𝛤 + 𝛥 ⪯• 𝛤

figure 5.10 Typing rules for environments and configurations

Each variable has as coeffect its grade in the environment, and as type the
type of its value. The side conditions use the relation ⪯• defined as follows:

𝛥 ⪯𝛩 𝛤 if 𝛥 +𝛩 ⪯ 𝛤

𝛥 ⪯• 𝛤 if 𝛥 ⪯𝛩 𝛤 for some𝛩

In rule (t-env), the side condition requires coeffects (grades) of variables in
the environment to be enough to cover their uses in all the corresponding
values. We could alternatively typecheck values with grade 𝑟𝑖 , as in Figure 3.5,
and impose the condition (𝛤1 + . . . + 𝛤𝑛) ⪯• 𝛤 . Here we prefer this variant
since more practical in the proofs.
In rules (t-vconf) and (t-conf), to be enough to cover their uses in the

expression as well.
In the relation𝛥 ⪯𝛩 𝛤 , the context𝛩 , called residual context in the following,

is needed since variables in the environment may have an arbitrary grade,
whereas, in the relation𝛥 ⪯ 𝛤 , grades of variables in 𝛤 should overapproximate
those in 𝛥. For instance, taking the linearity grade algebra of Example 2.4.3(2),
𝛤 could not add linear variables which are unused in both the expression
and the codomain of the environment. In other words, the residual context
allows resources to be, in a sense, “wasted”, accordingly with the instrumented
semantics, where there is no check that available resources are fully consumed.
As already said above, we plan to investigate how to impose a constraint also
on the remaing resources in future work, see Chapter 8 for more details. This
could be refined at the price of a more involved semantics.

5 .3 Resource-aware soundness

In this section, we prove our main result: soundness of the type system with
respect to the resource-aware big-step semantics. That is, for well-typed ex-
pressions there is a computation which is not stuck for any reason, including
resource consumption. Note that this is a may flavour of soundness as de-
scribed by Dagnino [23], Dagnino et al. [25], and De Nicola and Hennessy
[27], which is the only one we can prove in this context, because resource
consumption is non-deterministic, thus one can always get stuck consuming

5.3 resource-aware soundness 75

more resources than needed. We analyse separately type soundness for values
and for possibly diverging expressions.

type soundness for value expressions Since reduction of value
expressions cannot diverge, type soundness means that, if well-typed, then
they reduce to a value, as stated below.

theorem 5.3.1 (Soundness for value expressions): If 𝛤 ⊢ v |𝜌 : 𝜏𝑟 , then
⊢ v |𝜌 ⇒𝑟 v|𝜌 ′ for some v, 𝜌 ′.

We derive this theorem as a corollary of the following lemma, stating that,
if a value expression and environment are well-typed with a given residual
context, then they reduce to a value and environment which are well-typed
with the same residual context.

lemma 5.3.2 (Progress/Subject reduction for value expressions): If 𝛥 ⊢ v :
𝜏𝑟 and 𝛤 ⊢ 𝜌 ⊲ 𝛤 with 𝛤 + 𝛥 ⪯𝛩 𝛤 then v |𝜌 ⇒𝑟 v|𝜌 ′ and 𝛥′ ⊢ v : 𝜏𝑟 and
𝛤 ′ ⊢ 𝜌 ′ ⊲ 𝛤 ′ with 𝛤 ′ + 𝛥′ ⪯𝛩 𝛤 ′.

We definegrade(x, 𝛤) = 𝑟 if 𝛤 = 𝛤 ′, x :𝑟 𝜏 , otherwisegrade(x, 𝛤) = 0
Proof: By induction on the syntax of v.

v = x By Lemma 5.2.2(1) x :𝑟 ′ 𝜏 ⪯ 𝛥 with 𝑟 ⪯ 𝑟 ′. Since 𝛤 + x :𝑟 ′ 𝜏 +𝛩 ⪯
𝛤 +𝛥+𝛩 ⪯ 𝛤 and, by (t-env), 𝜌 = x1 ↦→ ⟨v1, 𝑟1⟩, . . . , x𝑛 ↦→ ⟨v𝑛, 𝑟𝑛⟩, 𝛤 =

x1 :𝑟1 𝜏1, . . . , x𝑛 :𝑟𝑛 𝜏𝑛 = 𝛤 ′, x :𝑠 𝜏 , 𝛤𝑖 ⊢ v𝑖 : 𝜏𝑟𝑖𝑖 ∀𝑖 ∈ 1..𝑛 and 𝑡1+𝑟 ′+𝑡2 ⪯ 𝑠

where grade(x, 𝛤) = 𝑡1 and grade(x,𝛩) = 𝑡2. Let 𝑗 be such that
x = x𝑗 , we get 𝛤 = 𝛤 ′+𝑠 ·𝛤𝑗 and 𝛤𝑗 ⊢ v : 𝜏1. By Lemma 5.2.6 𝑟 ·𝛤𝑗 ⊢ v : 𝜏𝑟 .
By rule (var), x |𝜌 ′, x ↦→ ⟨v, 𝑠⟩ ⇒𝑟 v|𝜌 ′, x ↦→ ⟨v, 𝑡1 + 𝑡2⟩. We have
𝛤 ′ + (𝑡1 + 𝑡2) · 𝛤𝑗 + 𝑟 · 𝛤𝑗 +𝛩 ⪯ 𝛤 ′ + (𝑡1 + 𝑡2) · 𝛤𝑗 + 𝑟 ′ · 𝛤𝑗 +𝛩 ⪯ 𝛤 +𝛩 . We
have grade(y, 𝛤 +𝛩) ⪯ grade(y, 𝛤 ′) for all y ∈ dom(𝛤 +𝛩) \ {x}
and grade(x, 𝛤 +𝛩) = 𝑡1 + 𝑡2, so 𝛤 +𝛩 ⪯ 𝛤 ′, x :𝑡1+𝑡2 𝜏 . By this relation
and rule (t-env), 𝛤 ′, x :𝑡1+𝑡2 𝜏 ⊢ 𝜌 ′ ⊲ 𝛤 ′ + (𝑡1 + 𝑡2) · 𝛤𝑗 .

v = ⟨𝑟 1 v1 , v2 ⟩𝑟 2 By Lemma 5.2.2(4) 𝑟 ′ · (𝛥1 + 𝛥2) ⪯ 𝛥, 𝜏 = 𝜏
𝑟1
1 ⊗ 𝜏

𝑟2
2 and

𝑟 ⪯ 𝑟 ′ such that 𝛥1 ⊢ v1 : 𝜏𝑟11 , 𝛥2 ⊢ v2 : 𝜏𝑟22 . By Lemma 5.2.6 𝑟 · 𝛥1 ⊢ v1 :
𝜏
𝑟 ·𝑟1
1 and 𝑟 ·𝛥2 ⊢ v2 : 𝜏𝑟 ·𝑟22 . We have 𝛤 ⊢ 𝜌 ⊲𝛤 with 𝛤 +𝑟 ·𝛥1+ (𝑟 ·𝛥2+𝛩) ⪯
𝛤 +𝛥 +𝛩 ⪯ 𝛤 . By induction hypothesis v1 |𝜌 ⇒𝑟 ·𝑟1 v1 |𝜌 ′, 𝛥′

1 ⊢ v1 : 𝜏𝑟 ·𝑟1
and 𝛤 ′

1 ⊢ 𝜌 ′1 ⊲ 𝛤
′
1 with 𝛤 ′

1 +𝛥′
1 + (𝑟 ·𝛥2 +𝛩) ⪯ 𝛤 ′

1 . Since 𝛤
′
1 ⊢ 𝜌 ′1 ⊲ 𝛤

′
1 with

𝛤 ′
1 + 𝑟 · 𝛥2 + (𝛥′

1 +𝛩) ⪯ 𝛤 ′
1 by induction hypothesis v2 |𝜌 ′1 ⇒𝑟 ·𝑟2 v2 |𝜌 ′2,

𝛥′
2 ⊢ v2 : 𝜏𝑟 ·𝑟2 and 𝛤 ′

2 ⊢ 𝜌 ′2⊲𝛤
′
2 with 𝛤

′
2+𝛥′

2+(𝛥′
1+𝛩) ⪯ 𝛤 ′

2 . By Lemma 5.2.7
𝛥′′
1 ⊢ v1 : 𝜏𝑟11 and𝛥′′

2 ⊢ v2 : 𝜏𝑟22 with 𝑟 ·𝛥′′
1 ⪯ 𝛥′

1 and 𝑟 ·𝛥′′
2 ⪯ 𝛥′

2. We have
𝛤 ′
2 + 𝑟 · (𝛥′′

1 +𝛥′′
2) +𝛩 = 𝛤 ′

2 + 𝑟 ·𝛥′′
1 + 𝑟 ·𝛥′′

2 +𝛩 ⪯ 𝛤 ′
2 +𝛥′

2 +𝛥′
1 +𝛩 ⪯ 𝛤 ′

2 .
By rules (t-pair) and (t-sub-v), 𝑟 · (𝛥′′

1 +𝛥′′
2) ⊢ ⟨𝑟1v1, v2 ⟩𝑟2 : (𝜏𝑟11 ⊗ 𝜏

𝑟2
2)𝑟 .

By rule (pair), v |𝜌 ⇒𝑟 ⟨𝑟1v1, v2 ⟩𝑟2 |𝜌 ′2.

□

Note that, even though reduction of value expressions just performs sub-
stitution, in a resource-aware semantics this is a significant event, since it

76 beyond object-oriented and small-steps

implies consuming some amount of resources. The lemma above states that
no resource exhaustion can happen, playing the role of progress plus subject
reduction in small-step semantics. However, rather than saying that reduction
cannot get stuck, since it is non-diverging we can simply say that there is a
final result.

adding divergence For possibly diverging expressions, instead, the
big-step semantics defined in Figure 5.5 suffers from the long-known draw-
back shown by Cousot and Cousot [21] and Leroy and Grall [42] that non-
terminating and stuck computations are indistinguishable, since in both cases
no finite proof tree of a judgment can be constructed. This is an issue for
our aim: to prove that for a well-typed expression there is a resource-aware
evaluation which does not get stuck, that is, either produces a value or diverges.
To solve this problem, we extend the big-step semantics to explicitly model
diverging computations, proceeding as follows:

• the judgment for value expressions remains defined as in the top section
of Figure 5.5

• the shape of the judgment for possibly diverging expressions is general-
ized to c ⇒𝑟 r, where the result r is either a pair consisting of a value
and a final environment, or divergence (∞);

• this judgment is defined through a generalized inference system, shown in
Figure 5.11, consisting of the rules from (ret) to (match-u/match-u-div),
and the corule (co-div) (differences with respect to the previous semantics
in the bottom section of Figure 5.5 are emphasized in grey7).

The key point here is that, in generalized inference systems, rules are inter-
preted in an essentially coinductive, rather than inductive, way. For details on
generalized inference systems we refer to what done by Ancona, Dagnino, and
Zucca [3] and Dagnino [24]; here, for the reader’s convenience, we provide a
self-contained presentation, instantiating general definitions on our specific
case.
Rules in Figure 5.11 handle divergence propagation. Notably, for each rule

in the bottom section of Figure 5.5, we add a divergence propagation rule
for each of the possibly diverging premises. The only rule with two possibly
diverging premises is (let). Hence, divergence propagation for an expression
let x = e1 in e2 is obtained by two (meta)rules: (let-div1) when e1 diverges,
and (let-div2) when e1 converges and e2 diverges; in Figure 5.11, for brevity,
this metarule is merged with (let), using the metavariable r. All the other
rules have only one possibly diverging premise, so one divergence propagation
rule is added and merged with the original metarule, analogously to (let-div2).
In generalized inference systems, infinite proof trees are allowed. Hence,

judgments c ⇒𝑟 ∞ can be derived, as desired, even though there is no axiom
introducing them, thus distinguishing diverging computations (infinite proof

7 Recall that, since the evaluation judgment is stratified, premises involving the judgment for
value expressions can be equivalently considered as side conditions.

5.3 resource-aware soundness 77

r ::= v|𝜌 | ∞ result

(ret)
v |𝜌 ⇒𝑠 v|𝜌 ′

return v |𝜌 ⇒𝑟 v|𝜌 ′
𝑟 ⪯ 𝑠 ≠ 0 (let-div1)

e1 |𝜌 ⇒𝑠 ∞
let x = e1 in e2 |𝜌 ⇒𝑟 ∞

(let/let-div2)

e1 |𝜌 ⇒𝑠 v|𝜌 ′′
e2 [x′/x] |𝜌 ′′, x′ ↦→ ⟨v, 𝑠⟩ ⇒𝑟 r
let x = e1 in e2 |𝜌 ⇒𝑟 r

x′ fresh

(app/app-div)

v1 |𝜌 ⇒𝑠 rec f .𝜆x .e |𝜌1 v2 |𝜌1 ⇒𝑡 v2 |𝜌2
e[x′/x] [f ′/f] |𝜌2, x′ ↦→ ⟨v2, 𝑡⟩, f ′ ↦→ ⟨rec f .𝜆x .e, 𝑠2⟩ ⇒𝑟 r

v1v2 |𝜌 ⇒𝑟 r

x′, f ′ fresh
𝑠1 + 𝑠2 ⪯ 𝑠

𝑠1 ≠ 0

(match-p/match-p -div)

v |𝜌 ⇒𝑠 ⟨𝑟1v1, v2 ⟩𝑟2 |𝜌 ′′
e[x′/x] [y′/y] |𝜌 ′′, x′ ↦→ ⟨v1, 𝑠 · 𝑟1⟩, y′ ↦→ ⟨v2, 𝑠 · 𝑟2⟩ ⇒𝑟 r

match v with ⟨x, y⟩ → e |𝜌 ⇒𝑟 r
x′, y′ fresh

(match-l/match-l-div)
v |𝜌 ⇒𝑠 inl𝑟v|𝜌 ′′ e1 [y/x1] |𝜌 ′′, y ↦→ ⟨v, 𝑠 · 𝑟 ⟩ ⇒𝑡 r
match v with inl x1 → e1 or inr x2 → e2 |𝜌 ⇒𝑡 r

y fresh

(match-r/match-r-div)
v |𝜌 ⇒𝑠 inr𝑟v|𝜌 ′′ e2 [y/x2] |𝜌 ′, y ↦→ ⟨v, 𝑠 · 𝑟 ⟩ ⇒𝑡 r
match v with inl x1 → e1 or inr x2 → e2 |𝜌 ⇒𝑡 r

y fresh

(match-u/match-u-div)
v |𝜌 ⇒𝑟 unit|𝜌 ′′ e |𝜌 ′′ ⇒𝑡 r
match v with unit → e |𝜌 ⇒𝑡 r

x′ fresh

(co-div)
e |𝜌 ⇒𝑟 ∞

figure 5.11 Adding divergence

78 beyond object-oriented and small-steps

(var)
y | ⟨∞,∞,1⟩⇒u | ⟨∞,∞,1⟩

(var)
f | ⟨∞,∞,1⟩⇒∞div | ⟨∞,0,1⟩

(var)
x | ⟨∞,0,1⟩⇒u | ⟨∞,0,0⟩

. . .

(match-u-div)
y;f x | ⟨∞,∞,1⟩⇒∞

(app -div)
f x | ⟨∞,∞,1⟩⇒∞

(match-u-div)
y;f x | ⟨∞,∞,1⟩⇒∞

figure 5.12 Example of resource-aware evaluation: divergency with no
consumption

tree) from stuck computations (no proof tree). However, a purely coinductive
interpretation would allow the derivation of spurious judgements, as shown by
Ancona, Dagnino, and Zucca [3], Cousot and Cousot [21], and Leroy and Grall
[42]. To address this issue, generalized inference systems may include corules,
written with a thick line, only (co-div) in our case, which refine the coinductive
interpretation, filtering out some (undesired) infinite derivations. Intuitively,
the meaning of (co-div) is to allow infinite derivations only for divergence (see
Example 5.3.4 below). Formally, we have the following definition instantiated
from Ancona, Dagnino, and Zucca [3] and Dagnino [24].

definition 5.3.3 : A judgment c ⇒𝑟 r is derivable in the generalized
inference system in Figure 5.11, written ⊢∞ c ⇒𝑟 r, if it has an infinite proof
tree constructed using the rules where, moreover, each node has a finite proof
tree constructed using the rules plus the corule.

example 5.3.4 : Let us consider again the expression y;f x of Example 5.1.3.
Now, its non-terminating evaluation in the environment y ↦→ ⟨unit,∞⟩, f ↦→
⟨div,∞⟩, x ↦→ ⟨unit, 1⟩, abbreviated ⟨∞,∞,1⟩ using the previous convention,
is formalized by the infinite proof tree in Figure 5.12, where instantiations of
(meta)rules (match-u) and (app) have been replaced by those of the corres-
ponding divergence propagation rule. It is immediate to see that each node in
such infinite proof tree has a finite proof tree constructed using the rules plus
the corule: the only nodes which have no finite proof tree constructed using
the rules are those in the infinite path, of shape either y;f x |⟨∞,∞,1⟩ ⇒ ∞
or f x |⟨∞,∞,1⟩ ⇒ ∞, and such judgments are directly derivable by the cor-
ule. On the other hand, infinite proof trees obtained by using (match-u) and
(app) would derive y;f x |⟨∞,∞,1⟩ ⇒ v|⟨∞,∞,1⟩ for any v. However, such
judgments have no finite proof tree using also the corule, which allows only to
introduce divergence, since there is no rule deriving a value with divergence
as a premise.

The transformation from the inductive big-step semantics in Figure 5.5 to
that handling divergence in Figure 5.11 is an instance of a general construction,
taking as input an arbitrary big-step semantics, fully formalized, and proved
to be correct, by Dagnino [23]. In particular, the construction is conservative,
that is, the semantics of converging computations is not affected [23].

definition 5.3.5 : Let ⊢ c ⇒𝑟 v|𝜌 denote that the judgment can be derived
by the rules in the bottom section of Figure 5.5, interpreted inductively.

5.3 resource-aware soundness 79

theorem 5.3.6 (Conservativity): ⊢∞ c ⇒𝑟 v|𝜌 ′ if and only if ⊢ c ⇒𝑟 v|𝜌 ′.

Note that to achieve this result corules are essential since, as observed in
Example 5.3.4, a purely coinductive interpretation allows for infinite proof
trees deriving values.

type soundness for possibly diverging expressions The defini-
tion of the semantics by the generalized inference system in Figure 5.11 allows
a very simple and clean formulation of type soundness: well-typed configura-
tions always reduce to a result (which can be possibly divergence). Formally:

theorem 5.3.7 (Soundness): If 𝛤 ⊢ c : 𝜏𝑟 , then ⊢∞ c ⇒𝑟 r for some r.

We describe now the structure of the proof, which is interesting in itself;
indeed, the semantics being big-step, there is no consolidated proof technique
as the long-time known progress plus subject reduction for the small-step case
[57].

The proof is driven by coinductive reasoning on the semantic rules, following
a schema firstly adopted by Ancona, Dagnino, and Zucca [3], as detailed
below. First of all, to the aim of such proof, it is convenient to turn to the
following equivalent formulation of type soundness, stating that well-typed
configurations which do not converge necessarily diverge.

theorem 5.3.8 (Completeness-∞): If 𝛤 ⊢ c : 𝜏𝑟 , and there is no v|𝜌 s.t.
⊢∞ c ⇒𝑟 v|𝜌 , then ⊢∞c⇒𝑟∞.

Indeed, with this formulation soundness of the type system can be seen
as completeness of the set of judgements c ⇒𝑟 ∞ which are derivable with
respect to the set of pairs ⟨𝑟, c⟩ such that c is well-typed with grade 𝑟 , and does
not converge. The standard technique to prove completeness of a coinductive
definition with respect to a specification 𝑆 is the coinduction principle, that
is, by showing that 𝑆 is consistent with respect to the coinductive definition.
This means that each element of 𝑆 should be the consequence of a rule whose
premises are in 𝑆 as well. In our case, since the definition of ⊢∞ c ⇒𝑟 ∞ is not
purely coinductive, but refined by the corule, completeness needs to be proved
by the bounded coinduction principle [3, 24], a generalization of the coinduction
principle. Namely, besides proving that 𝑆 is consistent, we have to prove that
𝑆 is bounded, that is, each element of 𝑆 can be derived by the inference system
consisting of the rules and the corules, in our case, only (co-div), interpreted
inductively.
The proof of Theorem 5.3.8 modularly relies on two results. The former

(Theorem 5.3.9) is the instantiation of a general result proved (Theorem 3.3)
by bounded coinduction [3]. For the reader’s convenience, to illustrate the
proof technique in a self-contained way, we report here statement and proof
for our specific case. Namely, Theorem 5.3.9 states completeness of diverging
configurations with respect to any family of configurations which satisfies the
progress-∞ property. The latter (Theorem 5.3.10) is the progress-∞ property
for our type system.

80 beyond object-oriented and small-steps

theorem 5.3.9 (Progress-∞ ⇒ Completeness-∞): For each grade 𝑟 , let C𝑟
be a set of configurations, and set C∞

𝑟 = {c ∈ C𝑟 | � v|𝜌 such that ⊢ c ⇒𝑟 v|𝜌}.
If the following condition holds:8

(progress-∞) c ∈ C∞
𝑟 implies that c⇒𝑟∞ is the consequence of a

rule where, for all premises of shape c′ ⇒𝑠 ∞, c′ ∈ C∞
𝑠 , and, for

all premises of shape c′ ⇒𝑠 r, with r ≠ ∞, ⊢ c′ ⇒𝑠 r.

then c ∈ C∞
𝑟 implies ⊢∞ c ⇒𝑟 ∞.

Proof: We set 𝑆 = {c ⇒𝑟 ∞ | c ∈ C∞
𝑟 } ∪ {c ⇒𝑟 r | r ≠ ∞, ⊢ c ⇒𝑟 r},

and prove that, for each c ⇒𝑟 r ∈ 𝑆 , we have ⊢∞ c ⇒𝑟 r, by bounded
coinduction. We have to prove two conditions.

1. 𝑆 is consistent, that is, each c ⇒𝑟 r in 𝑆 is the consequence of a rule
whose premises are in 𝑆 as well. We reason by cases:

• For each c ⇒𝑟 ∞ ∈ 𝑆 , by the (progress-∞) hypothesis it is the
consequence of a rule where, for all premises of shape c′ ⇒𝑠 ∞,
c′ ∈ C∞

𝑠 , hence c′ ⇒𝑠 ∞ ∈ 𝑆 , and, for all premises of shape c′ ⇒𝑠 r,
with r ≠ ∞, ⊢ c′ ⇒𝑠 r, hence c′ ⇒𝑠 r ∈ 𝑆 as well.

• For each c ⇒𝑟 v|𝜌 ∈ 𝑆 , we have ⊢ c ⇒𝑟 v|𝜌 , hence this judgment
is the consequence of a rule in Figure 5.5 where for each premise,
necessarily of shape c′ ⇒𝑟 ′ v′ |𝜌 ′, we have ⊢ c′ ⇒𝑟 ′ v′ |𝜌 ′, hence
c′ ⇒𝑟 ′ v′ |𝜌 ′ ∈ 𝑆 .

2. 𝑆 is bounded, that is, each c ⇒𝑟 r in 𝑆 can be inductively derived (has
a finite proof tree) using the rules and the corule in Figure 5.11. This
is trivial, since, for r = ∞, the judgment can be directly derived by
(co-div), and, for r ≠ ∞, since ⊢ c ⇒𝑟 r, this holds by definition.

□

Thanks to the theorem above, to prove type soundness (formulated as
in Theorem 5.3.8) it is enough to prove the progress-∞ property for well-
typed configurations which do not converge. The name is chosen to suggest
the analogous of progress in small-step semantics, meaning that, for a non-
converging well-typed configuration, the construction of a proof tree can never
get stuck.

SetWT𝑟 = {c | 𝛤 ⊢ c : 𝜏𝑟 for some 𝛤, 𝜏}, and, accordingly with the notation
in Theorem 5.3.9,WT∞

𝑟 = {c | c ∈ WT𝑟 and � v|𝜌 such that ⊢∞ c ⇒𝑟 v|𝜌}.

theorem 5.3.10 (Progress-∞): If c ∈ WT∞
𝑟 , then c ⇒𝑟 ∞ is the con-

sequence of a rule where, for all premises of shape c′ ⇒𝑠 ∞, c′ ∈ WT∞
𝑠 , and,

for all premises of shape c′ ⇒𝑠 r, with r ≠ ∞, ⊢ c′ ⇒𝑠 r.

8 Keep in mind that c ⇒𝑟 r denotes just the judgment (a triple), whereas ⊢ c ⇒𝑟 r and
⊢∞ c ⇒𝑟 r denote derivability of the judgment (Definition 5.3.5 and Definition 5.3.3,
respectively).

5.3 resource-aware soundness 81

Proof: By case analysis on c. We show only one case for the sake of brevity,
since other ones are similar.
c = let x = e1 in e2 |𝜌
By rule (t-conf) we have 𝛥 ⊢ let x = e1 in e2 : 𝜏𝑟 and 𝛤 ⊢ 𝜌 ⊲ 𝛤 with

𝛤 + 𝛥 ⪯𝛩 𝛤 for a given 𝛩 . By Lemma 5.2.3(2) we have 𝛥1 ⊢ e1 : 𝜏𝑟11 and
𝛥2, x :𝑟1 𝜏1 ⊢ e2 : 𝜏𝑟

′ and 𝛥1 + 𝛥2 ⪯ 𝛥 and 𝑟 ⪯ 𝑟 ′. We have two cases:

• � v1 |𝜌1 such that e1 |𝜌 ⇒𝑟1 v1 |𝜌1
Since 𝛤 +𝛥1 ⪯𝛩+𝛥2 𝛤 , by applying rule (let-div1) we have the thesis.

• ∃ v1 |𝜌1 such that e1 |𝜌 ⇒𝑟1 v1 |𝜌1
Sincewe have e1 |𝜌 ⇒𝑟1 v1 |𝜌1 we also have e1 |𝜌 ⇒ v1 |𝜌1 with ⌈𝜌⌉ = 𝜌

and ⌈𝜌1⌉ = 𝜌1. We have 𝛤 + 𝛥1 ⪯𝛩+𝛥2 𝛤 . By Lemma 5.3.11 we have
𝛥′
1 ⊢ v1 : 𝜏𝑟1 and 𝛤1 ⊢ 𝜌2 ⊲ 𝛤1 with 𝛤1 + 𝛥′

1 ⪯𝛩+𝛥2 𝛤1, for some 𝜌2 such
that ⌈𝜌2⌉ = 𝜌2 and e1 |𝜌1 ⇒𝑟1 v1 |𝜌2. By Lemma 5.2.7 we have 𝛥′′

1 ⊢ v : 𝜏1
with 𝑟1 · 𝛥′′

1 ⪯ 𝛥′
1. We have 𝛤1 + 𝑟1 · 𝛥′′

1 ⪯𝛩+𝛥2 𝛤1 + 𝛥′
1 ⪯𝛩+𝛥2 𝛤1.

Since x′ is fresh we have 𝛤1 + 𝑟1 · 𝛥′′
1 ⪯𝛩+𝛥2+x′:𝑟1𝜏1 𝛤1 + x′ :𝑟1 𝜏1, we

have 𝛤, x′ :𝑟1 𝜏1 ⊢ 𝜌2, x′ ↦→ ⟨𝑟1, v⟩ ⊲ 𝛤 + 𝑟1 · 𝛥′′
1 . By Lemma 5.2.8 and by

knowing that x′ :𝑟1 𝜏1 ⊢ x′ : 𝜏𝑟11 we have 𝛥2, x′ :𝑟1 𝜏1 ⊢ e2 [x′/x] : 𝜏𝑟 ′ .
Since we have 𝛤1 + 𝑟1 · 𝛥′′

1 + 𝛥2, x′ :𝑟1 𝜏1 ⪯𝛩 𝛤1, x′ :𝑟1 𝜏1 by rule (t-conf)
we have 𝛤1, x′ :𝑟1 𝜏1 ⊢ e2 [x′/x] |𝜌2, x′ ↦→ ⟨𝑟1, v⟩ : 𝜏𝑟 ′ . If � v2 |𝜌3 such
that e2 [x′/x] |𝜌2, x′ ↦→ ⟨𝑟1, v⟩ ⇒𝑟 ′ v2 |𝜌3 then by rule (let/let-div2) we
have the thesis, otherwise we have an absurd, since if v2 |𝜌3 would exists
then, by rule (let/let-div2) also c ⇒𝑟 v2 |𝜌3.

□

We derive this theorem as a corollary of the next lemma, which needs the
following notations:

• We use the metavariable 𝜌 for environments where grades have been
erased, hence they are maps from variables into values.

• We write ⌈𝜌⌉ for the environment obtained from 𝜌 by erasing grades.
• The reduction relation⇒ over pairs v |𝜌 and e |𝜌 is defined by themetarules

in Figure 5.5 where we remove side conditions involving grades. That is,
such relation models standard semantics.

The lemma states that, if an expression and environment are well-typed with
a given residual context, and (ignoring the grades) they reduce to a value
and environment, then the value is well-typed, and the environment can be9
decorated with grades to be well-typed, with the same residual context and we
can reduce the initial configuration to the well typed environment with graded
reduction. Note that, differently from Lemma 5.3.2, here the hypothesis of
well-typedness of the configuration is not enough, but we need also to assume
progress of standard reduction. a

9 That is, as soundness, subject reduction holds in the may flavour.

82 beyond object-oriented and small-steps

lemma 5.3.11 (Subject reduction): If 𝛥 ⊢ e : 𝜏𝑟 and 𝛤 ⊢ 𝜌1 ⊲𝛤 with 𝛤 +𝛥 ⪯𝛩
𝛤 and, set 𝜌1 = ⌈𝜌1⌉, e |𝜌1 ⇒ v|𝜌2, then 𝛥′ ⊢ v : 𝜏𝑟 and 𝛤 ′ ⊢ 𝜌2 ⊲ 𝛤

′ with
𝛤 ′ + 𝛥′ ⪯𝛩 𝛤 ′, for some 𝜌2 such that ⌈𝜌2⌉ = 𝜌2 and e |𝜌1 ⇒𝑟 v|𝜌2.

Proof: By induction on the reduction e |𝜌1 ⇒ v |𝜌2.

(ret) By Lemma 5.2.3(1) 𝛥′ ⊢ v : 𝜏𝑟 ′ with 𝑟 ⪯ 𝑟 ′, 𝛥′ ⪯ 𝛥 and 𝑟 ′ ≠ 0. By
(t-sub-v) 𝛥 ⊢ v : 𝜏𝑟 . By Lemma 5.3.2 v |𝜌1 ⇒𝑟 v|𝜌 ′2 and 𝛥′ ⊢ v : 𝜏𝑟 ′ and
𝛤 ′ ⊢ 𝜌 ′2 ⊲ 𝛤

′ with 𝛤 ′ + 𝛥′ ⪯𝛩 𝛤 ′. By rule (ret) return v |𝜌1 ⇒𝑟 v|𝜌 ′2.
By return v |𝜌1 ⇒𝑟 v|𝜌 ′2, we derive return v |𝜌1 ⇒ v|𝜌 ′2. Since ⇒
is deterministic, 𝜌 ′2 = 𝜌2, that is, the thesis.

(let) By Lemma 5.2.3(2) 𝛥1 ⊢ e1 : 𝜏𝑟11 and 𝛥2, x :𝑟1 𝜏1 ⊢ e2 : 𝜏𝑟 ′ and
𝛥1 +𝛥2 ⪯ 𝛥 and 𝑟 ⪯ 𝑟 ′. We have e1 |𝜌1 ⇒ v|𝜌2. We have 𝛤 ⊢ 𝜌1 ⊲ 𝛤 with
𝛤 + (𝛥1 +𝛥2) ⪯𝛩 𝛤 +𝛥 ⪯𝛩 𝛤 . By this consideration, 𝛤 +𝛥1 ⪯𝛩+𝛥2 𝛤 . By
induction hypothesis 𝛥′ ⊢ v : 𝜏𝑟11 and 𝛤 ′ ⊢ 𝜌2 ⊲𝛤

′ with 𝛤 ′ +𝛥′ ⪯𝛩+𝛥2 𝛤
′,

for some 𝜌2 such that ⌈𝜌2⌉ = 𝜌2 and e1 |𝜌1 ⇒𝑟1 v|𝜌2. By this relation
we derive 𝛤 ′ + 𝛥2 ⪯𝛩+𝛥′ 𝛤 ′. By Lemma 5.2.7 𝑟1 · 𝛥′′ ⪯ 𝛥′ and 𝛥′′ ⊢
v : 𝜏11 . Since x ∉ dom(𝛤 ′ + 𝛥2) and x ∉ dom(𝛤 ′) we have 𝛤 ′ + 𝛥2 +
x′ :𝑟1 𝜏1 ⪯𝛩+𝛥′ 𝛤 ′, x′ :𝑟1 𝜏1 and so 𝛤 ′, x′ :𝑟1 𝜏1 ⊢ 𝜌2, x′ ↦→ ⟨v, 𝑟1⟩ ⊲ 𝛤 ′ +
𝑟1 · 𝛥′′. By manipulating the previous relation we have 𝛤 ′ + 𝑟1 · 𝛥′′ +
𝛥2 + x′ :𝑟1 𝜏1 ⪯𝛩 𝛤 ′, x′ :𝑟1 𝜏1. Since 𝛥2, x :𝑟1 𝜏1 ⊢ e2 : 𝜏𝑟

′ and by applying
(t-sub) we have 𝛥2, x′ :𝑟1 𝜏1 ⊢ e2 [x′/x] : 𝜏𝑟 . By induction hypothesis on
e2 [x′/x] |𝜌2, x′ : v ⇒ v′ |𝜌3 we have �̂� ⊢ v′ : 𝜏𝑟 and 𝛤 ′′ ⊢ 𝜌3 ⊲ 𝛤

′′ with
𝛤 ′′ + �̂� ⪯𝛩 𝛤 ′′, for some 𝜌3 such that ⌈𝜌3⌉ = 𝜌3 and e2 [x′/x] |𝜌2, x′ ↦→
⟨𝑟1, v⟩ ⇒𝑟 v′ |𝜌3. Since e1 |𝜌1 ⇒𝑟1 v|𝜌2 and e2 [x′/x] |𝜌2, x′ ↦→ ⟨𝑟1, v⟩ ⇒𝑟

v′ |𝜌3 by (let) we have let x = e1 in e2 |𝜌1 ⇒𝑟 v|𝜌3 and so let x =

e1 in e2 |𝜌1 ⇒ v|𝜌 ′3. Since ⇒ is deterministic, 𝜌3 = 𝜌 ′3 and we have the
thesis.

(app) Wehave v1 |𝜌1 ⇒ rec f .𝜆x .e |𝜌2, v2 |𝜌2 ⇒ v2 |𝜌3 and e[x′/x] [f ′/f] |𝜌3, x′ :
v2, f ′ : rec f .𝜆x .e ⇒ v|𝜌4 with x′, f ′ fresh. By Lemma 5.2.3(3) 𝛥1 +
𝛥2 ⪯ 𝛥 and 𝑟 ⪯ 𝑟 ′ · 𝑟2 such that 𝛥1 ⊢ v1 : (𝜏𝑟11 →𝑠 𝜏

𝑟2
2)𝑟

′+𝑟 ′ ·𝑠 and
𝛥2 ⊢ v2 : 𝜏𝑟

′ ·𝑟1
1 and 𝑟 ′ ≠ 0. We have 𝛤 +𝛥1 ⪯𝛩+𝛥2 𝛤 . By Lemma 5.3.2 and

by Lemma 5.2.4(1) v1 |𝜌1 ⇒𝑟 ′+𝑟 ′ ·𝑠 rec f .𝜆x .e |𝜌2 and 𝛥′
1 ⊢ rec f .𝜆x .e :

(𝜏𝑟11 →𝑠 𝜏
𝑟2
2)𝑟

′+𝑟 ′ ·𝑠 and 𝛤 ′ ⊢ 𝜌2 ⊲ 𝛤 ′ with 𝛤 ′ + 𝛥′
1 ⪯𝛩+𝛥2 𝛤 ′. Since

v |𝜌 ⇒𝑡 v′ |𝜌 ′ implies v |𝜌 ⇒ v′ |𝜌 ′ and by determinism of ⇒ and ⇒𝑟

we have ⌈𝜌2⌉ = 𝜌2. We also have 𝛤 ′ + 𝛥2 ⪯𝛩+𝛥′
1
𝛤 ′, so, by Lemma 5.3.2

v2 |𝜌2 ⇒𝑟 ′ ·𝑟1 v2 |𝜌3 and 𝛥′
2 ⊢ v2 : 𝜏𝑟

′ ·𝑟1
1 and 𝛤 ′′ ⊢ 𝜌3 ⊲ 𝛤

′′ with 𝛤 ′′ +
𝛥′
2 ⪯𝛩+𝛥′

1
𝛤 ′′. Since v |𝜌 ⇒𝑡 v′ |𝜌 ′ implies v |𝜌 ⇒ v′ |𝜌 ′ and by determin-

ism of⇒ and⇒𝑟 we have ⌈𝜌3⌉ = 𝜌3. By Lemma 5.2.2(2) 𝑟 ′′ · 𝛥′′
1 ⪯ 𝛥′

1
such that 𝛥′′

1 , f :𝑠 𝜏𝑟11 →𝑠 𝜏
𝑟2
2 , x :𝑟1 𝜏1 ⊢ e : 𝜏𝑟22 and 𝑟 ′ + 𝑟 ′ · 𝑠 ⪯ 𝑟 ′′. By

these considerations we have (𝑟 ′ + 𝑟 ′ · 𝑠) · 𝛥′′
1 ⪯ 𝑟 ′′ · 𝛥′′

1 ⪯ 𝛥′
1. By rule

(t-fun) 𝛥′′
1 ⊢ rec f .𝜆x .e : 𝜏11 . By Lemma 5.2.8 and by Lemma 5.2.6 𝑟 ′ ·

(𝛥′′
1 , f

′ :𝑠 𝜏𝑟11 →𝑠 𝜏
𝑟2
2 , x

′ :𝑟1 𝜏1) ⊢ e[f ′/f] [x′/x] : 𝜏𝑟
′ ·𝑟2

2 . By Lemma 5.2.7
𝛷2 ⊢ v2 : 𝜏12 with (𝑟 ′ · 𝑟1) · 𝛷2 ⪯ 𝛥′

2. We have 𝛤 ′′ + 𝑟 ′ · 𝑠 · 𝛥′′
1 +

𝑟 ′ · 𝑟1 · 𝛷2 + 𝑟 ′ · (𝛥′′
1 , f

′ :𝑠 𝜏𝑟11 →𝑠 𝜏
𝑟2
2 , x

′ :𝑟1 𝜏1) ⪯𝛩 𝛤 ′′ + 𝛥′
2 + 𝛥′

1 +

5.4 programming examples and discussions 83

(f ′ :𝑟 ′ ·𝑠 𝜏𝑟11 →𝑠 𝜏
𝑟2
2 , x

′ :𝑟 ′ ·𝑟1 𝜏1). Since we have 𝛤 ′′ + 𝛥′
2 ⪯𝛩+𝛥′

1
𝛤 ′′ and

x′, f ′ ∉ dom(𝛤 ′′+𝛥′
1+𝛥′

2) and x′, f ′ ∉ dom(𝛤 ′′) we have 𝛤 ′′+𝛥′
2+𝛥′

1+
(f ′ :𝑟 ′ ·𝑠 𝜏𝑟11 →𝑠 𝜏

𝑟2
2 , x

′ :𝑟 ′ ·𝑟1 𝜏1) ⪯𝛩 𝛤 ′′, x′ :𝑟 ′ ·𝑟1 𝜏1, f ′ :𝑟 ′ ·𝑠 (𝜏
𝑟1
1 →𝑠 𝜏

𝑟2
2). By

rule (t-env) 𝛤 ′′, x′ :𝑟 ′ ·𝑟1 𝜏1, f ′ :𝑟 ′ ·𝑠 (𝜏
𝑟1
1 →𝑠 𝜏

𝑟2
2) ⊢ 𝜌3, x′ ↦→ ⟨v2, 𝑟 ′ · 𝑟1⟩, f ′ ↦→

⟨rec f .𝜆x .e, 𝑟 ′ · 𝑠⟩⊲𝛤 ′′+𝑟 ′·𝑠 ·𝛷1+𝑟 ′·𝑟1·𝛷2+𝑟 ′·(𝛥′′
1 , f

′ :𝑠 𝜏𝑟11 →𝑠 𝜏
𝑟2
2 , x

′ :𝑟1 𝜏1).
By induction hypothesis on e[x′/x] [f ′/f] |𝜌3, x′ : v2, f ′ : rec f .𝜆x .e ⇒
v|𝜌4, we have 𝛥′ ⊢ v : 𝜏𝑟 ·𝑟2 and 𝛤 ′ ⊢ 𝜌4 ⊲ 𝛤

′ with 𝛤 ′ + 𝛥′ ⪯𝛩 𝛤 ′,
for some 𝜌4 such that ⌈𝜌4⌉ = 𝜌4 and e[x′/x] [f ′/f] |𝜌3, x′ : v2, f ′ :
rec f .𝜆x .e ⇒𝑟 ′ ·𝑟2 v|𝜌4. By applying rule (app)we have v1v2 |𝜌1 ⇒𝑟 v|𝜌4
and so also v1v2 |𝜌1 ⇒ v|𝜌 ′4. Since⇒ is deterministic 𝜌4 = 𝜌 ′4 we have
the thesis.

(match-p) By Lemma 5.2.3(5) 𝛥1 + 𝛥2 ⪯ 𝛥 and 𝑟 ⪯ 𝑡 such that 𝛥1 ⊢ v :
(𝜏𝑟11 ⊗ 𝜏

𝑟2
2)𝑠 and 𝛥2, x :𝑠 ·𝑟1 𝜏, y :𝑠 ·𝑟2 𝜏2 ⊢ e : 𝜏𝑡 and 𝑠 ≠ 0. By Lemma 5.3.2

v |𝜌 ⇒𝑠 v|𝜌 ′ and 𝛥′
1 ⊢ v : 𝜏𝑟 and 𝛤 ′ ⊢ 𝜌1 ⊲ 𝛤

′ with 𝛤 ′ +𝛥′
1 +𝛥2 ⪯ 𝛤 ′. By

Lemma 5.2.4(3) v = ⟨𝑟1v1, v2 ⟩𝑟2 . By Lemma 5.2.2(4) 𝑟 ′ · (�̂�1+�̂�2) ⪯ 𝛥′
1 and

𝑠 ⪯ 𝑟 ′ such that �̂�1 ⊢ v1 : 𝜏𝑟11 and �̂�2 ⊢ v2 : 𝜏𝑟22 . By Lemma 5.2.7𝛷1 ⊢ v1 :
𝜏11 and𝛷2 ⊢ v2 : 𝜏12 with 𝑟1 ·𝛷1 ⪯ �̂�1 and 𝑟2 ·𝛷2 ⪯ �̂�2. By Lemma 5.2.8
and rule (t-sub) 𝛥2, x′ :𝑠 ·𝑟1 𝜏1, y′ :𝑠 ·𝑟2 𝜏2 ⊢ e[x′/x] [y′/y] : 𝜏𝑟 . We have
𝛤 ′ + (𝑠 · 𝑟1) ·𝛷1 + (𝑠 · 𝑟2) ·𝛷2 + (𝛥2, x :𝑠 ·𝑟1 𝜏1, y :𝑠 ·𝑟2 𝜏2) ⪯ 𝛤 ′ + 𝑠 · �̂�′

1 + 𝑠 ·
�̂�2 + (𝛥2, x :𝑠 ·𝑟1 𝜏1, y :𝑠 ·𝑟2 𝜏2) ⪯ 𝛤 ′ + 𝛥′

1 + (𝛥2, x :𝑠 ·𝑟1 𝜏1, y :𝑠 ·𝑟2 𝜏2). Since
x′, y′ ∉ dom(𝛤 ′+𝛥′

1+𝛥2) and x′, y′ ∉ dom(𝛤 ′) and 𝛤 +𝛥′
1+𝛥2 ⪯ 𝛤 , we

have 𝛤 ′+𝛥′
1+(𝛥2, x :𝑠 ·𝑟1 𝜏1, y :𝑠 ·𝑟2 𝜏2) ⪯ 𝛤 ′, x :𝑠 ·𝑟1 𝜏1, y :𝑠 ·𝑟2 𝜏2. By (t-env)

𝛤 ′, x :𝑠 ·𝑟1 𝜏1, y :𝑠 ·𝑟2 𝜏2 ⊢ 𝜌1, x′ ↦→ ⟨v1, 𝑠 · 𝑟1⟩, y′ ↦→ ⟨v2, 𝑠 · 𝑟2⟩ ⊲ 𝛤 ′ + (𝑠 ·
𝑟1) ·𝛷1 + (𝑠 · 𝑟2) ·𝛷2. By induction hypothesis on e[x′/x] [y′/y] |𝜌1, x′ ↦→
⟨v1, 𝑠 · 𝑟1⟩, y′ ↦→ ⟨v2, 𝑠 · 𝑟2⟩ ⇒ v′ |𝜌2 we get 𝛥′ ⊢ v′ : 𝜏𝑟 and 𝛤 ′ ⊢
𝜌2 ⊲ 𝛤 ′ with 𝛤 ′ + 𝛥′ ⪯𝛩 𝛤 ′, for some 𝜌2 such that ⌈𝜌2⌉ = 𝜌2 and
e[x′/x] [y′/y] |𝜌1, x′ ↦→ ⟨v1, 𝑠 · 𝑟1⟩, y′ ↦→ ⟨v2, 𝑠 · 𝑟2⟩ ⇒𝑟 v|𝜌2. By apply-
ing rule (match-p) and by determinism of⇒ we have the thesis.

□

5 .4 Programming examples and discussions
In this section, for readability, we use the surface syntax and, moreover, assume
some standard additional constructs and syntactic conventions. Notably, we
generalize (tensor) product types to tuple types, with the obvious extended
syntax, and sum types to variant types, written ℓ1:T1 + . . . + ℓ𝑛 :T𝑛 for some tags
ℓ1, . . . , ℓ𝑛 , injections generalized to tagged variants ℓ𝑟 e, and matching of the
shape match e with ℓ1x1 or . . . or ℓ𝑛x𝑛 . We write just ℓ as an abbreviation
for an addend ℓ :Unit0 in a variant type, and also for the corresponding tagged
variants ℓ0unit and patterns ℓx in a matching construct. Moreover, we will
use type and function definitions (that is, synonyms for function and type
expressions), and, as customary, represent (equi-)recursive types by equations.
Finally, we will omit 1 annotations as in the previous examples, and we will
consider 0 as default, hence omitted, as recursion grade (that is, functions are
by default non-recursive).

84 beyond object-oriented and small-steps

Bool = true + false
Nat = zero + succ:Nat
NatList = empty + cons:(Nat ⊗ NatList)
OptNat = none + some:Nat

not: Bool -> Bool
not = \b.match b with true -> false or false -> true

even: Nat ->∞ Bool
even = rec ev.\n.match n with zero -> true or succ m -> not (ev m)

+: Nat ->∞ Nat -> Nat
+ = rec sum.\n.\m. match n with zero -> m or succ x -> succ (sum x m)

double: Nat2 -> Nat
double n = n + n

*: Nat ->∞ Nat∞ -> Nat
* = rec mult.\n.\m.match n with zero -> zero or succ x -> (mult x m) + m

length : NatList ->∞ Nat
length = rec len.

\ls.match ls with empty ->
zero or cons ls1 ->
match ls1 with <_,tl> ->
succ (len tl)

get : NatList ->∞ Nat -> OptNat
get = rec g.

\ls.\i.match ls with empty -> none
or cons ls1 ->
match ls1 with <hd,tl> ->
match i with zero ->

some hd or succ j -> g j tl

figure 5.13 Examples of type and function definitions

natural numbers and lists The encoding of booleans, natural num-
bers, lists of natural numbers, and optional natural numbers, is given at the
top of Figure 5.13 followed by the definition of some standard functions. As-
sume, firstly, the grade algebra of natural numbers with bounded usage, Ex-
ample 2.4.3(1), extended with ∞, as in Example 2.4.3(7), needed as annotation
of recursive functions, as has been illustrated in Example 5.2.1; we discuss
below what happens taking exact usage instead.
As a first comment, note that in types of recursive functions the recursion

grade needs to be∞, as expected. On the other hand, most function parameters
are graded 1, since they are used at most once in each branch of the function’s
body. The second parameter of multiplication, instead, needs to be graded
∞. Indeed, it is used in the body of the function both as argument of sum,
and inside the recursive call. Hence, its grade 𝑟 should satisfy the equation
(1 + 𝑟) ≤ 𝑟 , analogously to what happens for the recursive grade; compare
with the parameter of function double, which is used twice as well, and can
be graded 2. In the following alternative definitions:
double: Nat1 -> Nat
double n = n * succ succ zero

5.4 programming examples and discussions 85

double: Nat∞ -> Nat
double n = succ succ zero * n

the parameter needs to be graded differently depending on how it is used in
the multiplication. In other words, the resource-aware type system captures,
as expected, non-extensional properties.

Assume now the grade algebra of natural numbers with exact usage, again
extended with ∞. Interestingly enough, the functions length and get above
are no longer typable.

In length, this is due to the fact that, when the list is non-empty, the head
is unused, whereas, since the grade of a pair is “propagated” to both the com-
ponents, it should be used exactly once as the tail. The function would be typ-
able assuming for lists the type NatList=empty+cons:(Nat0⊗NatList),
which, however, would mean to essentially handle a list as a natural number.

Function get, analogously, cannot be typed since, in the last line, only one
component of a non-empty list (either the head or the tail) is used in a branch
of the match, whereas both should be used exactly once. Both functions could
be typed, instead, grading with∞ the list parameter; this would mean to allow
an arbitrary usage in the body. These examples suggest that, in a grade algebra
with exact usage, such as that of natural numbers, or the simpler linearity grade
algebra, see Example 2.4.3(2), there is often no middle way between imposing
severe limitations on code, to ensure linearity (or, in general, exactness), and
allowing code which is essentially non-graded.

additive product The product type we consider in Figure 5.7 is the
tensor product, also called multiplicative, following Linear Logic terminology
of Girard [34]. In the destructor construct for such type, both components are
simultaneously extracted, each one with a grade which is (a multiple of) that
of the pair, see the semantic10 rule (match-p) in Figure 5.5. Thus, as shown
in the examples above, programs which discard the use of either component
cannot be typed in a non-affine grade algebra. Correspondingly, the resource
consumption for constructing a (multiplicative) pair is the sum of those for
constructing the two components, corresponding to a sequential evaluation,
see rule (pair) in Figure 5.5. The cartesian product, instead, also called additive,
formalized in Figure 5.14, has one destructor for each component, so that the
component which is not extracted is discarded. Correspondingly, the resource
consumption for constructing an additive pair is an upper bound of those
for constructing the two components, corresponding in a sense to a non-
deterministic evaluation. The get example, rewritten using the constructs of
the additive product, becomes typable even in a non-affine grade algebra. In an
affine grade algebra, programs can always be rewritten replacing the cartesian
product with the tensor, and conversely; in particular, 𝜋𝑖v can be encoded
as match v with ⟨x1, x2⟩ → x𝑖 , even though, as said above, resources are
consumed differently (sum versus upper bound). An interesting remark is that

10 Typing rules follow the same pattern.

86 beyond object-oriented and small-steps

v ::= . . . | [𝑟1v1, v2]𝑟2 | 𝜋1v | 𝜋2v
𝜎, 𝜏 ::= . . . | T × S

(apair)
v1 |𝜌 ⇒𝑟 ·𝑟1 v1 |𝜌 ′ v2 |𝜌 ⇒𝑟 ·𝑟2 v2 |𝜌 ′

[𝑟1v1, v2]𝑟2 |𝜌 ⇒𝑟 [𝑟1v1, v2]𝑟2 |𝜌 ′ (proj)
v |𝜌 ⇒𝑠 [𝑟1v1, v2]𝑟2 |𝜌 ′

𝜋𝑖v |𝜌 ⇒𝑟 v𝑖 |𝜌 ′
𝑖 ∈ {1, 2}
𝑟 ⪯ 𝑠 · 𝑟𝑖

(t-apair)
𝛤 ⊢ v1 : 𝜏𝑟11 𝛤 ⊢ v2 : 𝜏𝑟22

𝑟 · 𝛤 ⊢ [𝑟1v1, v2]𝑟2 : (𝜏𝑟11 × 𝜏
𝑟2
2)𝑟

(t-proj)
𝛤 ⊢ v : (𝜏𝑟11 × 𝜏

𝑟2
2)𝑟

𝛤 ⊢ 𝜋𝑖v : 𝜏𝑟 ·𝑟𝑖
𝑖

𝑟 ≠ 0

figure 5.14 Cartesian product

(var)
ev | ⟨1,1,z⟩ ⇒1 even | ⟨0,1,z⟩

(var)
n | ⟨0,1,z⟩ ⇒ z | ⟨0,0,z⟩ D

(app)
evn | ⟨1,1,z⟩ ⇒ t | ⟨0,0,z⟩

(var)
ev | ⟨𝑛,1,s𝑛z⟩ ⇒𝑛 even | ⟨𝑛−1,1,z⟩

(var)
n | ⟨𝑛−1,1,z⟩ ⇒ z | ⟨𝑛−1,0,z⟩ D′

(app)
evn | ⟨𝑛,1,s𝑛z⟩ ⇒ b | ⟨0,0,z⟩

with D =

t | ⟨0,0,z⟩ ⇒ t | ⟨0,0,z⟩
(match-l)

if-z(z,t,sn→not(evn)) | ⟨0,0,z⟩ ⇒ t | ⟨0,0,z⟩

and D′ =
not(evn) | ⟨𝑛−1,1,z⟩ ⇒ b | ⟨0,0,z⟩

(match-l)
if-z(z,t,sn→not(evn)) | ⟨𝑛−1,1,z⟩ ⇒ b | ⟨0,0,z⟩

figure 5.15 Example of resource-aware evaluation: terminating recursion

record/object calculi, where generally width subtyping is allowed, meaning
that components can be discarded at runtime, and object construction happens
by sequential evaluation of the fields, need to be modeled by multiplicative
product and affine grades. In future work we plan to investigate object calculi
which are linear, or, more generally, use resources in an exact way.

terminating recursion As anticipated, even though the type system
can only derive, for recursive functions, recursion grades which are “infin-
ite”, their calls which terminate in standard semantics can terminate also in
resource-aware semantics, provided that the initial amount of the function
resource is enough to cover the (finite number of) recursive calls, as shown in
Figure 5.15.

For brevity, we write z, s, and t for zero, succ, and true, respectively,
if-z(v, e1,sx→e2) for match v with z → e1 or sx → e2, and ⟨𝑟,𝑠,v⟩ for
the environment ev ↦→ ⟨even, 𝑟 ⟩,n ↦→ ⟨v, 𝑠⟩. In the top part of the figure we
show the proof tree for the evaluation of evn in the base case, that is, in an
environment where the value of n is zero. In this case, both → and n can be
graded 1, since they are used only once. In the bottom part, we show the proof
tree in an environment where the value of n is s𝑛z, for 𝑛 ≠ 0. Here, b stands
for either true or false, and b for its complement.

5.4 programming examples and discussions 87

pub.∞

priv.∞ pub.1

priv.10

figure 5.16 Grade algebra of privacy levels and linearity

Result = success + failure

OptChar = none + some:Charpriv.∞

fnType= Charpriv.∞ → (ok:Charpriv.∞ +
error)

open: Stringpub.∞ → FileHandle

read: FileHandle → (OptCharpriv.∞⊗ FileHandle)

write: (Charpriv.∞⊗ FileHandle) → FileHandle
close: FileHandle → Unit0

figure 5.17 Types of data and filesystem interface

processing data from/to files The following example illustrates how
we can simultaneously track privacy levels, as introduced in Example 5.1.2,
and linearity information. Linearity grades guarantee the correct use of files,
whereas privacy levels are used to ensure that data are handled without leaking
information. We combine the two grade algebras with the smash product
of Example 2.4.7. So there are five grades: 0 (meaning unused), priv.1 and
pub.1 (meaning used linearly in either priv or pub mode), and priv.∞, pub.∞
(meaning used an arbitrary number of times in either priv or pub mode). The
partial order is graphically shown in Figure 5.16. The neutral element for
multiplication is pub.1, which therefore will be omitted.

In Figure 5.17 are the types of the data, the processing function and the func-
tions of a filesystem interface, assuming types Char, String, and FileHandle
to be given. The type Result indicates success or failure. The type OptChar
represents the presence or absence of a Char and is used in the function read-
ing from a file; fnType is the type of a function processing a private Char
and returning either a private Char or error. The signatures of the functions
of the filesystem interface specify that file handlers are used in a linear way.
Hence, after opening a file and doing a number of read or write operations,
the file must be closed.

In the code of Figure 5.18 we use, rather than match e1 with unit → e2,
the alternative syntax e1;e2 mentioned in Section 5.1. The function fileRW
takes as parameters an input and an output file handler and a function that
processes the character read from the input file. The result indicates whether
all the characters of the input file have been successfully processed and written
in the output file or there was an error in processing some character.

88 beyond object-oriented and small-steps

1 fileRW:FileHandle →pub.∞ FileHandle → fnTypepub.∞ → Resultpub.∞=
2 rec fileRdWr.
3 \inF.\outF.\fn.
4 match (read inF) with <oC,inF1> ->
5 match oC with none ->
6 close inF1;close outF;success
7 or (some c) ->
8 match (fn c) with (ok c1) ->
9 let outF1 = write <c1,outF> in
10 fileRdWr inF1 outF1 fn
11 or error ->
12 close inF1;close outF;failure

figure 5.18 Processing data from/to files

The function starts by reading a character from the input file. If read returns
none, then all the characters from the input file have been read and so both
files are closed and the function returns success (lines 5—6). Closing the
files is necessary in order to typecheck this branch of the match. If read
returns a character (lines 7—12), then the processing function fn is applied to
that character. Then, if fn returns a character, then this result is written to
the output file using the file handler passed as a parameter and, finally, the
function is recursively called with the file handlers returned by the read and
write functions as arguments. If, instead, fn returns error, then both files
are closed and the function returns failure (lines 11—12).
Observe that, given the order of Figure 5.16, we have 0 ̸⪯ pub.1. Therefore

the variables of type FileHandle, which have grade pub.1, must be used
exactly once in every branch of the matches in their scope.
A call to fileRW could be:
fileRW (open "inFile") (open "outFile") (rec f.\x.x).

Note that , with

write: (Charpub.∞⊗ FileHandle) → FileHandle

the function fileRW would not be well-typed, since a priv character cannot
be the input of write. On the other hand, using subsumption, we can apply
fileRW to a processing function with type

Charpriv.∞ → (ok:Charpub.∞ + error)

Finally, in the type of fileRW, the grade of the first arrow says that the function
is recursive and it is internally used in an unrestricted way. The function could
also be typed with:

FileHandle →priv.∞ FileHandle → fnTypepub.∞ → Resultpriv.∞

However, in this case its final result would be private and therefore less usable.

6
Beyond structural coeffects

In the type systems presented in previous chapters, coeffect contexts are
(representations of) finite maps from variables to grades, called coeffects when
used in this position. As firstly noted byMcBride [46] andWood and Atkey [56],
and formalized at the end of Section 2.4, such coeffect contexts form a (partially
ordered) module over the underlying grade algebra, that is, they are equipped
with partial order, sum, zero, and scalar multiplication, satisfying the required
axioms, which are defined pointwise on top of the corresponding ones of the
grade algebra. Intuitively, this means that the coeffects of each variable (the
way it is used) can be computed independently; when this happens, coeffects
are called structural.
The aim of this chapter is to investigate a significant example in which

structural coeffects are not adequate. Notably, we want to use coeffects to stat-
ically guarantee relevant properties on the usage of memory in an imperative
language. It is importante to notice that the same approach could be used also
in OO and functional languages.
Indeed, the fact that a program introduces sharing between two variables,

say x and y, for instance through a field assignment x.f = y in an object-
oriented language, clearly has a coeffect (grade) nature, being a particular
way to use the resources x and y. However, to the best of our knowledge, no
attempt has been made to use coeffects to track this information statically.
A likely reason is that this kind of coeffect does not fit in the framework

of structural coeffect contexts. The problem is that sharing is propagated
transitively: for instance, a program introducing sharing between x and y, and
between y and z, introduces sharing between x and z as well.

In this chapter, we show that sharing can be naturally modeled by adopting
coeffect contexts which are non-structural, but still have a module structure,
notably providing sum and scalar multiplication. The idea is that operations on
coeffect contexts are not simply the pointwise extension of grade operations,
since sharing information should transitively propagated. In other words, the
coeffect is not a property of a single variable, but of the whole context, as in
flat coeffects [52], which, however, have not even a per-variable representation.
As a consequence, coeffects cannot be the same of grades used as annotations
of types, as we did in the previous chapters; hence, in this chapter we will
propose a type-and-coeffect system rather than a graded type system, leaving
to future work the integration with graded types.
In such type-and-coeffect system, we are able to detect, in a simple and

89

90 beyond structural coeffects

static way, some relevant notions in the literature, notably that an expression
is a capsule, that is, evaluates to the unique entry point for a portion of memory.
To illustrate its effectiveness, we enhance the type system tracking sharing to
model a sophisticated set of features related to uniqueness and immutability
[32, 33].
We illustrate the approach on a simple reference language, an imperative

variant of the calculus considered in Chapter 3.
In Section 6.1 we briefly describe the language, and in Section 6.2 we in-

troduce the notions about sharing and immutability needed to express the
properties we want to enforce. In Section 6.3 and Section 6.4 we describe the
two type systems with the related results. Finally, in Section 6.5 we discuss
the expressive power, comparing with closely related proposals.
The type system presented in this chapter overapproximate sharing, as in

may-alias analysis, but a deep inverstigation to understand how to manage
must-alias analysis is a possible future work.

6.1 Imperative Java-like calculus

Syntax, reduction rules, and the standard type system are reported in Figure 6.1.
The syntax is an extension of that in Figure 3.1. Notably, here we have prim-

itive types, included to show that they that behave as immutable references,
and, since we are in an imperative context, field assignment.
Expressions of primitive types, unspecified, include constants k. Variables

x, y, z, . . . occur both in source code (method parameters, including the special
variable this, and local variables in blocks) and as references in memory.
We will sometimes abbreviate {𝜏 x = e; e′} by e;e′ when x does not occur
free in e.
The class table is abstractly modeled by the functions fields, mbody, and

mtype, defined as in Section 3.1. For simplicity, here we do not consider sub-
typing (inheritance), which is an orthogonal feature.

Reduction is defined over configurations of shape e |𝜇, where a memory 𝜇 is
a map from references to objects of shape [v1, . . . , v𝑛]C , and we assume free
variables in e to be in dom(𝜇). We denote by 𝜇x .𝑖=v the memory obtained from
𝜇 by updating the 𝑖-th field of the object associated to x by v. Note that, being
the calculus imperative, values of class types are now references in memory.

Reduction and typing rules are straightforward. Differently from Chapter 3,
here for simplicity we use evaluation contexts in reduction rules. In rule
(t-mem), a memory is well-formed in a context assigning a type to all and
only references in memory, provided that, for each reference, the associated
object has the same type. In rule (t-conf), a configuration is well-typed if the
expression is well-typed, and the memory is well-formed in the same context
(recall that free variables in the expression are bound in the domain of the
memory).

6.1 imperative java-like calculus 91

e ::= x | k | e.f | e.f = e′ | new C(es) | expression
| e.m(es) | {𝜏 x = e; e′} | . . .

𝜏 ::= C | P type

v ::= x | k value
E ::= [] | E.f | E.f = e′ | x.f = E | new C(vs, E, es) evaluation context

| | E.m(es) | x.m(vs, E, es) | {𝜏 x = E; e} | . . .

(ctx)
e |𝜇 → e′ |𝜇′

E[e] |𝜇 → E[e′] |𝜇′

(field-access)
x.f𝑖 |𝜇 → v𝑖 |𝜇

𝜇 (x) = new C(v1, . . . , v𝑛)
fields(C) = 𝜏1 f1; . . . 𝜏𝑛 f𝑛;
𝑖 ∈ 1..𝑛

(field-assign)
x.f𝑖= v |𝜇 → v |𝜇x .𝑖=v

𝜇 (x) = [v1, . . . , v𝑛]C
fields(C) = 𝜏1 f1; . . . 𝜏𝑛 f𝑛;
𝑖 ∈ 1..𝑛

(new)
new C(vs)|𝜇 → x |𝜇, x ↦→ new C(vs)

x ∉ dom(𝜇)

(invk)
x.m(v1, . . . , v𝑛)|𝜇 → e[x/this] [v1/x1] . . . [v𝑛/x𝑛] |𝜇

𝜇 (x) = new C(vs)
mbody(C,m) = ⟨x1 . . . x𝑛, e⟩

(block) {𝜏 x = v; e}|𝜇 → e[v/x] |𝜇

(t-var)
𝛤 ⊢ x : 𝜏

𝛤 (x) = 𝜏 (t-const)
𝛤 ⊢ k : Pk

(t-field-access)
𝛤 ⊢ e : C

𝛤 ⊢ e.f𝑖 : 𝜏𝑖
fields(C) = 𝜏1 f1; . . . 𝜏𝑛 f𝑛;
𝑖 ∈ 1..𝑛

(t-field-assign)
𝛤 ⊢ e : C 𝛤 ⊢ e′ : 𝜏𝑖

𝛤 ⊢ e.f𝑖= e′ : 𝜏𝑖
fields(C) = 𝜏1 f1; . . . 𝜏𝑛 f𝑛;
𝑖 ∈ 1..𝑛

(t-new)
𝛤 ⊢ e𝑖 : 𝜏𝑖 ∀𝑖 ∈ 1..𝑛

𝛤 ⊢ new C (e1, . . . , e𝑛) : C
fields(C) = 𝜏1 f1; . . . 𝜏𝑛 f𝑛;

(t-invk)
𝛤 ⊢ e0 : C 𝛤 ⊢ e𝑖 : 𝜏𝑖 ∀𝑖 ∈ 1..𝑛

𝛤 ⊢ e0.m(e1, . . . , e𝑛) : 𝜏
mtype(C,m) = 𝜏1 . . . 𝜏𝑛 → 𝜏

(t-block)
𝛤 ⊢ e : 𝜏 𝛤, x : 𝜏 ⊢ e′ : 𝜏 ′

𝛤 ⊢ {𝜏 x = e; e′} : 𝜏 ′

(t-obj)
𝛤 ⊢ v𝑖 : 𝜏𝑖 ∀𝑖 ∈ 1..𝑛
𝛤 ⊢ [v1, . . . , v𝑛]C : C

fields(C) = 𝜏1 f1; . . . 𝜏𝑛 f𝑛;

(t-mem)
𝛤 ⊢ 𝜇 (x𝑖) : C𝑖 ∀𝑖 ∈ 1...𝑛

𝛤 ⊢ 𝜇

𝛤 = x1 : C1, . . . , x𝑛 : C𝑛
dom(𝛤) = dom(𝜇)

(t-conf)
𝛤 ⊢ e : 𝜏 𝛤 ⊢ 𝜇

𝛤 ⊢ e |𝜇 : 𝜏

figure 6.1 Syntax, standard reduction, and standard type system

92 beyond structural coeffects

6.2 Sharing and mutation

In languages with state and mutations, keeping control of sharing is a key issue
for correctness. This is exacerbated by concurrency mechanisms, since side-
effects in one thread can affect the behaviour of another, hence unpredicted
sharing can induce unplanned/unsafe communication.
Sharing means that some portion of the memory can be reached through

more than one reference, say through x and y, so thatmanipulating thememory
through x can affect y as well.

definition 6.2.1 (Sharing in memory): The sharing relation in memory 𝜇,
denoted by ⊲⊳𝜇 , is the smallest equivalence relation on dom(𝜇) such that:

x ⊲⊳𝜇 y if 𝜇 (x) = [v1, . . . , v𝑛]C and y = v𝑖 for some 𝑖 ∈ 1..𝑛

Note that y = v𝑖 above means that y and v𝑖 are the same reference, that is, it
corresponds to what is sometimes called pointer equality.
It is important for a programmer to be able to rely on capsule and immut-

ability properties. Informally, an expression has the capsule property if its
result will be the unique entry point for a portion of memory. For instance, we
expect the result of a clone method to be a capsule, see Example 6.2.5 below.
This allows programmers to identify state that can be safely used by a thread
since no other thread can access/modify it. A reference has the immutability
property if its reachable object graph will be never modified. As a consequence,
an immutable reference can be safely shared by threads.
The following simple example illustrates the capsule property.

example 6.2.2 : Assume the following class table:

class B {int f;}
class C {B f1; B f2;}

and consider the expression e = {B z = new B(2); x.f1= y;new C(z, z)}.
This expression has two free variables (in other words, uses two external
resources) x and y. We expect such free variables to be bound in an outer
declaration, if the expression occurs as a subterm of a program, or to rep-
resent references in current memory. This expression is a capsule. Indeed,
even though it has free variables (uses external resources) x and y, such
variables will not be connected to the final result. We say that they are lent
in e. In other words, lent references can be manipulated during the evalu-
ation, but cannot be permanently saved. So, we have the guarantee that the
result of evaluating e, regardless of the initial memory, will be a reference
pointing to a fresh portion of memory. For instance, evaluating e in 𝜇 =

{x ↦→ [x1,x1]C,x1 ↦→ [0]B,y ↦→ [1]B}, the result is a fresh reference w, in
thememory 𝜇′ = {x ↦→ [y,x1]C,x1 ↦→ [0]B,y ↦→ [1]B,z ↦→ [2]B,w ↦→ [z,z]C}.

Lent and capsule properties are formally defined below. We denote by fv(e)
the free variables of e.

6.2 sharing and mutation 93

definition 6.2.3 (Lent reference): For x ∈ fv(e), x is lent in e if, for all 𝜇,
e |𝜇 →★ y |𝜇′ implies x ⊲⊳𝜇′ y does not hold.

An expression e is a capsule if all its free variables are lent in e.

definition 6.2.4 (Capsule expression): An expression e is a capsule if, for
all 𝜇, e |𝜇 →★ y |𝜇′ implies that, for all x ∈ fv(e), x ⊲⊳𝜇′ y does not hold.

The capsule property can be easily detected in simple situations, such as
using a primitive deep clone operator, or a closed expression. However, the
property also holds in many other cases, which are not easily detected (static-
ally) since they depend on the way variables are used. To see this, we consider
a more involved example, adapted from what done by Giannini et al. [33].

example 6.2.5 :
class B {int f; B clone() {new B(this.f)}
class A { B f;

A mix (A a) {this.f=a.f; a} // this, a and result linked
A clone () {new A(this.f.clone())}
// this and result not linked

}
A a1 = new A(new B(0));
A mycaps = {

A a2 = new A(new B(1));
a1.mix(a2).clone() // (1)

// a1.mix(a2).clone().mix(a2) // (2)
}

The result of mix, as the name suggests, will be connected to both the
receiver and the argument, whereas the result of clone, as expected for such a
method, will be a reference to a fresh portion of memorywhich is not connected
to the receiver.

Now let us consider the code after the class definition, where the program-
mer wants the guarantee that mycaps will be initialized with a capsule, that
is, an expression which evaluates to the entry point of a fresh portion of
memory. Figure 6.2 shows a graphical representation of the memory after

=
A

f=

a1
=

B
f=0

mycaps

A
f=

a2
=

B
f=1

A
f=

B
f=1

=
A

f=

a1
=

B
f=0

mycaps

A
f=

a2
=

B
f=1

A
f=

B
f=1

(1) (2)

figure 6.2 Graphical representation of the memory for Example 6.2.5

the evaluation of such code. Side (1) shows the resulting memory if we eval-
uate line (1) but not line (2), while side (2) shows the resulting memory if

94 beyond structural coeffects

we evaluate line (2) but not line (1). The thick arrow points to the result
of the evaluation of the block and a2 is a local variable. In side (1) a1 is
not in sharing with mycaps, whereas in side (2) a1 is in sharing with a2

which is in sharing with mycaps and so a1 is in sharing with mycaps as well.
Set e1 = {A a2 = new A(new B(1)); a1.mix(a2).clone()} and e2 =
{A a2 = new A(new B(1)); a1.mix(a2).clone().mix(a2)}.We can
see that a1 is lent in e1, since its evaluation produces the object pointed to
by the thick arrow which is not in sharing with a1, whereas a1 is not lent in
e2. Hence, e1 is a capsule, since its free variable, a1, is not in sharing with the
result of its evaluation, whereas a2 is not.

We consider now immutability. A reference x has the immutability property
if the portion of memory reachable from x will never change during execution,
as formally stated below.

definition 6.2.6 : The reachability relation in memory 𝜇, denoted by ⊲𝜇 ,
is the reflexive and transitive closure of the relation on dom(𝜇) such that:

x ⊲𝜇 y if 𝜇 (x) = [v1, . . . , v𝑛]C and y = v𝑖 for some 𝑖 ∈ 1..𝑛

definition 6.2.7 (Immutable reference): For x ∈ fv(e), x is immutable in
e if e |𝜇 →★ e′ |𝜇′ and x ⊲𝜇 y implies 𝜇 (y) = 𝜇′(y).

A typical way to prevent mutation, as wewill show in Section 6.4, is by a type
modifier read, so that an expression with type tagged in this way cannot occur
as the left-hand side of a field assignment. However, to have the guarantee
that a certain portion of memory is actually immutable, a type system should
be able to detect that it cannot be modified through any possibile reference.
For instance, consider a variant of Example 6.2.5 with the same classes A and
B.

example 6.2.8 :

A a1 = new A(new B(0));
read A mycaps = {A a2 = new A(new B(1));

a1.mix(a2).clone() // (1)
// a1.mix(a2).clone().mix(a2) // (2)

}
// mycaps.f.f=3 // (3)
a1.f.f=3 // (4)

The reference mycaps is now declared as a read type, hence we cannot
modify its reachable object graph through mycaps. For instance, line (3) is
ill-typed. However, if we replace line (1) with line (2), since in this case mycaps
and a1 share their f field, then the same effect of line (3) can be obtained
by line (4). This example shows that the immutability property is, roughly, a
conjunction of the read restriction and the capsule property.

6.3 coeffects for sharing 95

6.3 Coeffects for sharing

Introducing sharing, e.g., by a field assignment x.f = y, can be clearly seen
as adding an arc between x and y in an undirected graph where nodes are
variables. However, such a graphical representation would be a global one,
whereas we would like to keep a per variable representation, which, moreover,
supports sum and scalar multiplication operators. We introduce auxiliary
entities called links, and attach to each variable a set of them, so that an arc
between x and y is represented by the fact that they have a common link1.
Moreover, there is a special link r which denotes a connection with the final
result of the expression.
For instance, considering again the classes of Example 6.2.2:

class B {int f;}
class C {B f1; B f2;}

and the program x.f1=y;new C(z1,z2), the following typing judgment
will be derivable:

(∗) x :C {ℓ},y :B {ℓ},z1 :B {r},z2 :B {r} ⊢ x.f1=y;new C(z1,z2) : C
with ℓ ≠ r

meaning that the program’s execution introduces sharing between x and
y, as expressed by their common link ℓ , and between z1, z2, and the final
result, as expressed by their common link r. The derivation for this judgment
is shown later (Figure 6.4).
Formally, we assume a countable set Lnk, ranged over by ℓ , with a distin-

guished element r. In the coeffect system for sharing, coeffects X , Y , and Z
will be finite sets of links. Let L be the finite powerset of Lnk, that is, the
set of coeffects, and let CCtxL be the set of the corresponding coeffect con-
texts 𝛾 , that is (representations of) maps in LV , with V the set of variables.
Given 𝛾 = x1 : X1, . . . , x𝑛 : X𝑛 , the (transitive) closure of 𝛾 , denoted 𝛾★, is
x1 : X★

1 , . . . , x𝑛 : X★
𝑛 where X★

1 , . . . ,X
★
𝑛 are the smallest sets such that:

ℓ ∈ X𝑖 implies ℓ ∈ X★
𝑖

ℓ, ℓ ′ ∈ X★
𝑖 , ℓ

′ ∈ X★
𝑗 implies ℓ ∈ X★

𝑗

For instance, if 𝛾 = x : {ℓ}, y : {ℓ, ℓ ′}, z : {ℓ ′}, then 𝛾★ = x : {ℓ, ℓ ′}, y : {ℓ, ℓ ′},
z : {ℓ, ℓ ′}. That is, since x and y are connected by ℓ , and y and z are connected
by ℓ ′, then x and z are connected as well. Note that, if 𝛾 is closed (𝛾★ = 𝛾), then
two variables have either the same, or disjoint coeffects.
To sum two closed coeffect contexts, obtaining in turn a closed one, we

need to apply the transitive closure after pointwise union. For instance, the
above coeffect context 𝛾 could have been obtained as pointwise union of
x : {ℓ}, y : {ℓ} and y : {ℓ ′}, z : {ℓ ′}.

1 This roughly corresponds to the well-known representation of a (hyper)graph by a bipartite
graph.

96 beyond structural coeffects

Scalar multiplication is defined in terms of an operator ⊳ on sharing coef-
fects, which replaces the r link (if any) in the second argument with the first
argument:

X ⊳ Y =

∅ if X = ∅
Y if X ≠ ∅ and r ∉ Y

(Y \ {r}) ∪ X if X ≠ ∅ and r ∈ Y

Similarly to sum, to multiply a coeffect context with a scalar X , we need to
apply the transitive closure after pointwise application of the operation ⊳. For
instance, {ℓ ′′} · (x : {ℓ, r}, y : {ℓ ′}) = x : {ℓ, ℓ ′′}, y : {ℓ ′}. To see that transitive
closure can be necessary, consider, for instance, {ℓ ′′} · (x : {ℓ, r}, y : {ℓ ′′}) =
x : {ℓ, ℓ ′′}, y : {ℓ, ℓ ′′}.
When an expression e, typechecked with context 𝛤 , replaces a variable

with coeffect X in an expression e′, the product X · 𝛤 computes the sharing
introduced by the resulting expression on the variables in 𝛤 . For instance, set
e = x.f1=y;new C(z1,z2) of (∗) and assume that e replaces z in z.f1=w,
for which the judgment z :{r} C,w :{r} B ⊢ z.f1=w : B is derivable. We
expect thatz1 andz2, being connected to the result of e, should be connected to
whatever z is connected to (w and the result of z.f1=w), whereas the sharing
of x and y should not be changed. In our example, we have {r} ⊳ {ℓ} = {ℓ}
and {r} ⊳ {r} = {r}.

Altogether we have the following formal definition:

definition 6.3.1 : The sharing coeffect system is defined by:

• the grade algebra L = ⟨L, ⊆,∪, ⊳, ∅, {r}⟩
• the partially ordered L-module ⟨CCtxL★, ⊆̂, +, ∅, ·⟩ where:

– CCtxL★ are the fixpoints of ★, that is, the closed coeffect contexts
– ⊆̂ is the pointwise extension of ⊆ to CCtxL★
– 𝛾 +𝛾 ′ = (𝛾 ∪̂ 𝛾 ′)★, where ∪̂ is the pointwise extension of ∪ to CCtxL★
– X · 𝛾 = (X ⊳̂ 𝛾)★, where ⊳̂ is the pointwise extension of ⊳ to CCtxL★.

Operations on closed coeffect contexts can be lifted to type-and-coeffect
contexts in the usual way.
It is easy to check that L = ⟨L, ⊆,∪, ⊳, ∅, {r}⟩ is actually a grade algebra

with ∅ neutral element of ∪ and {r} neutral element of ⊳. The fact that
⟨CCtxL★, ⊆̂, +, ∅, ·⟩ is actually a partially ordered L-module can be proved as
follows: first of all, LV = ⟨CCtxL, ⊆̂, ∪̂, ∅, ⊳̂⟩ is a partially ordered L-module,
notably, the structural one (all operations are pointwise); it is easy to see that _★
is an idempotent homomorphism on LV ; then, the thesis follows from a result
proved by Bianchini et al. [12], stating that an idempotent homomorphism on
a module induces a module structure on the set of its fixpoints.
In a judgment 𝛤 ⊢ e : 𝜏 , the coeffects in 𝛤 describe an equivalence relation

on dom(𝛤) ∪ {r} where each coeffect corresponds to an equivalence class.
The fact that two variables, say x and y, have the same coeffect means that

6.3 coeffects for sharing 97

𝛤, 𝛥 ::= x1 :X1 𝜏1, . . . , x𝑛 :X𝑛
𝜏𝑛 (type-and-coeffect) context

X ::= {ℓ1, . . . , ℓ𝑛} coeffect (set of links)

(t-var) ∅ · 𝛤 + x :{r} 𝜏 ⊢ x : 𝜏
(t-const) ∅ · 𝛤 ⊢ k : Pk

(t-field-access)
𝛤 ⊢ e : C

𝛤 ⊢ e.f𝑖 : 𝜏𝑖
fields(C) = 𝜏1 f1; . . . 𝜏𝑛 f𝑛;
𝑖 ∈ 1..𝑛

(t-field-assign)
𝛤 ⊢ e : C 𝛥 ⊢ e′ : 𝜏𝑖
𝛤 + 𝛥 ⊢ e.f𝑖= e′ : 𝜏𝑖

fields(C) = 𝜏1 f1; . . . 𝜏𝑛 f𝑛;
𝑖 ∈ 1..𝑛

(t-new)
𝛤𝑖 ⊢ e𝑖 : 𝜏𝑖 ∀𝑖 ∈ 1..𝑛

𝛤1 + . . . + 𝛤𝑛 ⊢ new C (e1, . . . , e𝑛) : C
fields(C) = 𝜏1 f1; . . . 𝜏𝑛 f𝑛;

(t-invk)
𝛤0 ⊢ e0 : C 𝛤𝑖 ⊢ e𝑖 : 𝜏𝑖 ∀𝑖 ∈ 1..𝑛

X ′
0 · 𝛤0 + . . . + X ′

𝑛 · 𝛤𝑛 ⊢ e0.m(e1, . . . , e𝑛) : 𝜏

mtype(C,m) ≡fr X0, 𝜏
X1
1 . . . 𝜏

X𝑛
𝑛 → 𝜏

ℓ0, . . . , ℓ𝑛 fresh
X ′
𝑖 = X𝑖 ∪ {ℓ𝑖 } ∀𝑖 ∈ 1..𝑛

(t-block)
𝛤 ⊢ e : 𝜏 𝛤 ′, x :X 𝜏 ⊢ e′ : 𝜏 ′

(X ∪ {ℓ}) · 𝛤 + 𝛤 ′ ⊢ {𝜏 x = e; e′} : 𝜏 ′ ℓ fresh

(t-prim)
𝛤 ⊢ e : P

{ℓ} · 𝛤 ⊢ e : P ℓ fresh

(t-obj)
𝛤𝑖 ⊢ v𝑖 : 𝜏𝑖 ∀𝑖 ∈ 1..𝑛

𝛤1 + · · · + 𝛤𝑛 ⊢ [v1, . . . , v𝑛]C : C
fields(C) = 𝜏1 f1; . . . 𝜏𝑛 f𝑛;

(t-mem)
𝛤𝑖 ⊢ 𝜇 (x𝑖) : C𝑖 ∀𝑖 ∈ 1...𝑛

𝛤𝜇 + 𝛤 ⊢ 𝜇

𝛤𝜇 = x1 :{ℓ1 } C1, . . . , x𝑛 :{ℓ𝑛 } C𝑛
dom(𝛤𝜇) = dom(𝜇)
𝛤 = ({ℓ1} · 𝛤1) + . . . + ({ℓ𝑛} · 𝛤𝑛)
ℓ1, . . . , ℓ𝑛 fresh

(t-conf)
𝛥 ⊢ e : 𝜏 𝛤 ⊢ 𝜇

𝛥 + 𝛤 ⊢ e |𝜇 : 𝜏
dom(𝛥) ⊆ dom(𝛤)

figure 6.3 Coeffect system for sharing

the evaluation of e possibly introduces sharing between x and y. Moreover,
the fact that r is in the coeffect of x models possible sharing between x and
the final result of the expression. Intuitively, sharing only happens among
variables of reference types (classes), since a variable x of a primitive type P
denotes an immutable value rather than a reference in memory. To have a
uniform treatment, this is modeled by the fact that a judgment x :{ℓ } P ⊢ x : P
with ℓ fresh is derivable (by rules (t-var) and (t-prim), as detailed below2).

The typing rules are given in Figure 6.3.
In the rule for variable, the variable is obviously linked with the result (they

coincide), hence its coeffect is {r}. In rule (t-const), no variable is used.
In rule (t-field-access), the coeffects are those of the receiver expression,

since the receiver is in sharing with its field. In rule (t-field-assign), the cof-

2 Alternatively, variables of primitive types could be in a separate context, with no coeffects.

98 beyond structural coeffects

fects of the two arguments are summed. In particular, the result of the receiver
expression, of the right-side expression, and the final result, will be in shar-
ing. For instance, we derive x :{r} C,y :{r} B ⊢ x.f1=y : B. In rule (t-new),
analogously, the coeffects of the arguments of the constructor are summed. In
particular, the results of the argument expressions and the final result will be
in sharing. For instance, we derive z1 :{r} B,z2 :{r} B ⊢ new C(z1,z2) : C.

In rule (t-invk), the coeffects of the arguments are summed, after multiply-
ing each of them with the coeffect of the corresponding parameter, where, to
avoid clashes, we assume that links different from r are freshly renamed, as
indicated by the notation ≡fr. Moreover, a fresh link ℓ𝑖 is added3, since other-
wise, if the parameter is not used in the body (hence has empty coeffect), the
links of the argument would be lost in the final context, see the example for
rule (t-block) below.
The auxiliary function mtype is the same as in previous chapters. The

condition that method bodies should conform to method types is expressed as
follows:

(t-meth) mtype(C,m) = X0, 𝜏
X1
1 . . . 𝜏

X𝑛
𝑛 → 𝜏 implies

mbody(C,m) = ⟨x1 . . . x𝑛, e⟩ and
this :X ′

0
C, x1 :X ′

1
𝜏1, . . . , x𝑛 :X ′

𝑛
𝜏𝑛 ⊢ e : 𝜏

X ′
𝑖 = X ′

𝑗 ≠ ∅ implies X𝑖 = X𝑗 ≠ ∅
That is, coeffects computed by typechecking themethod body should express

no more sharing than those in the method type.
As an example, consider the following method:

class B {int f;}
class C {B f1; B f2;

C m(B y, B z1, B z2) {this.f1=y; new C(z1,z2)}
}

where mtype(C,m)={ℓ},B{ℓ },B{r},B{r} → C, with ℓ≠r. The method body is
well-typed, since we derive

this :{ℓ } C,y :{ℓ } B,z1 :{r} B,z2 :{r} B ⊢ x.f1=y;new C(z1,z2) : C,
with ℓ≠r

Consider now the method call x.m(z,y1,y2). We get the following deriv-
ation:

(t-var)
x :C {r} ⊢ x : C

(t-var)
z :B {r} ⊢ z : B

(t-var)
y1 :B {r} ⊢ y1 : B

(t-var)
y2 :B {r} ⊢ y2 : B

(t-invk)
x :C X ,z :B X ,y1 :B Y ,y2 :B Y ⊢ x.m(z,y1,y2) : C

where X = {ℓ ′, ℓ0, ℓ1} and Y = {r, ℓ2, ℓ3}.
The context of the call is obtained as follows

{ℓ ′, ℓ0} · (x :{r} C) + {ℓ ′, ℓ1} · (z :{r} B) + {r, ℓ2} · (y1 :{r} B) + {r, ℓ3} · (y2 :{r} B)
= (x :{ℓ ′,ℓ0 } C) + (z :{ℓ ′,ℓ1 } B) + (y1 :{r,ℓ2 } B) + (y2 :{r,ℓ3 } B)
= x :X C,z :X B,y1 :Y B,y2 :Y B

where ℓ ′ is a fresh renaming of the (method) link ℓ , and ℓ𝑖 , 0 ≤ 𝑖 ≤ 3, are
fresh links.
3 Analogously to the rule (t-app) in Figure 2.2 in the call-by-value case.

6.3 coeffects for sharing 99

For a call x.m(z,z,y), instead, we get the following derivation:
(t-var)

x :C {r} ⊢ x : C
(t-var)

z :B {r} ⊢ z : B
(t-var)

z :B {r} ⊢ z : B
(t-var)

y :B {r} ⊢ y : B
(t-invk)

x :C X ,z :B X ,y :B X ⊢ x.m(z,z,y) : C

where X = {ℓ ′, ℓ0, ℓ1, ℓ2, ℓ3, r}. That is, x, y, z, and the result, are in sharing
(note the role of the transitive closure here).
In the examples that follow we will omit the fresh links unless necessary.
In rule (t-block), the coeffects of the expression in the declaration are

multiplied by the union of those of the local variable in the body and the
singleton of a fresh link, and then summed with those of the body. The
union with the fresh singleton is needed when the variable is not used in
the body (hence has empty coeffect), since otherwise its links, that is, the
information about its sharing in e, would be lost in the final context. For in-
stance, consider the body of method m above, which is an abbreviation for
B unused = (this.f1=y); new (z1, z2). Without the union with the
fresh singleton, we could derive the judgment this :∅ C,y :∅ B,z1 :{r} B,
z2 :{r} B ⊢ B unused = (this.f1=y); new (z1, z2) : C, where
the information that after the execution of the field assignment this and y
are in sharing is lost.
Rule (t-prim) allows the coeffects of an expression of primitive type to be

changed by removing the links with the result, as formally modeled by the
multiplication of the context with a fresh singleton coeffect. For instance, the
following derivable judgment

z1 :{ℓ } B,z2 :{ℓ } B ⊢ new C(z1,z2).f1.f : int, with ℓ ≠ r

shows that there is no longer a link between the result and z1,z2.
Rule (t-obj) is straightforward. In rule (t-mem), a memory is well-formed in

a context which is the sum of two parts. The former assigns a type to all and
only references in memory, as in the standard rule in Figure 6.1, and a fresh
singleton coeffect. The latter sums the coeffects of the objects in memory, after
multiplying each of them with that of the corresponding reference.
For instance, for x ↦→ [y]A,y ↦→ [0]B,z ↦→ [y]A, the former context is
x :{ℓx} A,y :{ℓy} B,z :{ℓz} A, the latter is the sum of the three contexts y :{ℓx} A,
∅, and y :{ℓz} A. Altogether, we get x :{ℓx,ℓy,ℓz} A,y :{ℓx,ℓy,ℓz} B,z :{ℓx,ℓy,ℓz} A, ex-
pressing that the three references are connected. Note that no r link occurs in
memory; indeed, there is no final result.
In rule (t-conf), the coeffects of the expression and those of the memory

are summed.
As an example of a more involved derivation, consider the judgment

x :{ℓ } C,y :{ℓ } B ⊢ {B z = new B(2); x.f1=y;new C(z,z)} : C,
with ℓ ≠ r

Herex.f1=y;newC(z,z) abbreviates {Bw= (x.f1=y);newC(z,z)}.
The derivation is in Figure 6.4, where the subderivations D1 and D2 are given
separately for space reasons.

100 beyond structural coeffects

(t-block)
(t-new)

(t-const) ∅ ⊢ 2 : int
∅ ⊢ new B(2) : B

(t-block)
D1 D2

𝛤 ⊢ {B w = (x.f1=y); new C(z,z)} : C
x :{ℓ } C,y :{ℓ } B ⊢ {B z = new B(2); x.f1=y;new C(z,z)} : C

ℓ, ℓ′ fresh
x :{ℓ } C,y :{ℓ } B = ({r} + {ℓ′}) · ∅ + x :{ℓ } C,y :{ℓ } B
𝛤 = (∅ + {ℓ}) · (x :{r} C,y :{r} B) + z :{r} B = x :{ℓ } C,y :{ℓ } B,z :{r} B

D1 = (t-field-assign)

(t-var)
x :{r} C ⊢ x : C

(t-var)
y :{r} B ⊢ y : B

x :{r} C,y :{r} B ⊢ x.f1=y : B

D2 = (t-new)

(t-var)
w :∅ B,z :{r} B ⊢ z : B

(t-var)
w :∅ B,z :{r} B ⊢ z : B

w :∅ B,z :{r} B ⊢ new C(z,z) : C

figure 6.4 Example of type derivation

The rules in Figure 6.3 immediately lead to an algorithm which inductively
computes the coeffects of an expression. Indeed, all the rules except (t-prim)
are syntax-directed, that is, the coeffects of the expression in the consequence
are computed as a linear combination of those of the subexpressions, where
the basis is the rule for variables. Rule (t-prim) is assumed to be always used
in the algorithm, just once, for expressions of primitive types.

We assume there are coeffect annotations in method parameters to handle
(mutual) recursion; for non-recursive methods, such coeffects can be computed
(that is, in the coherency condition above, the X𝑖s inmtype are exactly the X ′

𝑖 s).
We leave to future work the investigation of a global fixed-point inference to
compute coeffects across mutually recursive methods (some care is needed to
ensure termination since we generate fresh links for the calls).
Considering again Example 6.2.2:

class B {int f; B clone [{ℓ }] () {new B(this.f)} // ℓ ≠ R

class A { B f;

A mix [{ R }] (A { R } a) {this.f=a.f; a}

// this, a and result linked

A clone [{ℓ }] () {new A(this.f.clone()) } // ℓ ≠ R

}
A a1 = new A(new B(0));
A mycaps = {A a2 = new A(new B(1));

a1.mix(a2).clone()
// a1.mix(a2).clone().mix(a2)

}

The parts emphasized in gray are the coeffects which can be computed for
the parameters by typechecking the body (the coeffect for this is in square
brackets). In a real language, such coeffects would be declared by some concrete
syntax, as part of the type information available to clients. From such coeffects,
a client knows that the result of mix will be connected to both the receiver

6.3 coeffects for sharing 101

and the argument, whereas the result of clone will be a reference to a fresh
portion of memory, not connected to the receiver.
Using the sharing coeffects, we can discriminate a2.mix(a1).clone()

and a1.mix(a2).clone().mix(a2), as desired. Indeed, for the first mix
call, a1 :{r} A, a2 :{r} A ⊢ a1.mix(a2) : A holds. Then, the expression
a1.mix(a2).clone() returns a fresh result, hence a1 :{ℓ } A, a2 :{ℓ } A ⊢
a1.mix(a2).clone() : A holds, with ℓ ≠ r. After the final call to mix, since
a1 and a2 have a link in common, the operation + adds to the coeffect of a1
the links of a2, including r, hence we get:

a1 :{ℓ,r} A ⊢ A a2 = new A(new B(1));a1.mix(a2).clone().mix(a2) : A

expressing that a1 is linked to the result.

We now state the properties of the coeffect system for sharing.
Given 𝛤 = x1 :X1 𝜏1, . . . , x𝑛 :X𝑛 𝜏𝑛 , set coeff(𝛤, x𝑖) = X𝑖 and links(𝛤) =⋃
𝑖∈1..𝑛 X𝑖 ∪ {r}. Moreover, the restriction of 𝛤 to the set of variables V =

{x1, . . . , x𝑚}, with 𝑚 ≤ 𝑛, and the set of links X , denoted 𝛤↾⟨V ,X⟩, is the
context x1 :Y1 𝜏1, . . . , x𝑚 :Y𝑚 𝜏𝑚 where, for each 𝑖 ∈ 1..𝑚, Y𝑖 = X𝑖 ∩ X . In the
following, 𝛤↾𝛥 abbreviates 𝛤↾⟨dom(𝛥), links(𝛥)⟩.

Recall that ⊲⊳𝜇 denotes the sharing relation in memory 𝜇 (Definition 6.2.1).
The following result shows that the typing of the memory precisely captures
the sharing relation.

lemma 6.3.2 : If 𝛤 ⊢ 𝜇, then x ⊲⊳𝜇 y if and only if coeff(𝛤, x) = coeff(𝛤, y).

Subject reduction states that not only type but also sharing is preserved.
More precisely, a reduction step may introduce new variables and new links,
but the sharing between previous variables must be preserved, as expressed
by the following theorem.

theorem 6.3.3 (Subject reduction): If 𝛤 ⊢ e |𝜇 : 𝜏 and ⟨e, 𝜇⟩ → ⟨e′, 𝜇′⟩,
then 𝛥 ⊢ e′ |𝜇′ : 𝜏 , for some 𝛥 such that (𝛤 + 𝛥)↾𝛤 = 𝛤 .

To prove this theorem we need some auxiliary definitions and lemmas.

definition 6.3.4 : 𝛤 ◀ 𝛤 ′ if

1. 𝛤 ′ = 𝛤 or

2. 𝛤 ′ = {ℓ} · 𝛤 with ℓ fresh

lemma 6.3.5 : If D : 𝛤 ⊢ e : 𝜏 , then there is a subderivation D′ : 𝛤 ′ ⊢ e : 𝜏
of D ending with a syntax-directed rule and 𝛤 ′ ◀ 𝛤

Proof: By induction on D : 𝛤 ⊢ e : 𝜏

if D ends with a syntax-directed rule then 𝛤 ′ = 𝛤 and D = D′. If D
ends with rule (t-prim) we have 𝛤 = {ℓ} · 𝛥 with ℓ fresh and so 𝛥 ◀ 𝛤

where 𝛥 ⊢ e : 𝜏 . By induction hypothesis on the premise we have a
subderivation D′ : 𝛤 ′ ⊢ e : 𝜏 ending with a syntax-directed rule and
𝛤 ′ ◀ 𝛥. We have two cases:

102 beyond structural coeffects

• 𝛤 ′ = 𝛥: by this and by 𝛥 ◀ 𝛤 we obtain 𝛤 ′ ◀ 𝛤 , that is, the thesis
• 𝛥 = {ℓ ′} · 𝛤 ′ with ℓ ′ fresh: by this and 𝛤 = {ℓ} · 𝛥 we obtain

𝛤 = {ℓ} · {ℓ ′} · 𝛤 ′ = {ℓ ′} · 𝛤 ′ so we have 𝛤 ′ ◀ 𝛤 and so the thesis

□

lemma 6.3.6 (Inversion): If 𝛤 ⊢ e : 𝜏 then exists a context 𝛤 ′ such that
𝛤 ′ ◀ 𝛤 and 𝛤 ′ ⊢ e : 𝜏 and the following properties holds:

1. If e = x then 𝛤 ′ = ∅ · 𝛤 ′′ + x :{r} 𝜏

2. If e = k, then 𝜏 = Pk .

3. If e = e.f𝑖 , then 𝛤 ′ ⊢ e : C and fields(C) = 𝜏1 f1; . . . 𝜏𝑛 f𝑛; and 𝜏𝑖 = 𝜏 .

4. If e = e.f𝑖= e′ then 𝛤1 ⊢ e : C and fields(C) = 𝜏1 f1; . . . 𝜏𝑛 f𝑛; and 𝜏𝑖 = 𝜏

and 𝛤2 ⊢ e′ : 𝜏𝑖 with 𝛤 ′ = 𝛤1 + 𝛤2.

5. If e = new C (e1, . . . , e𝑛)C, then we have fields(C) = 𝜏1 f1; . . . 𝜏𝑛 f𝑛; and
𝛤𝑖 ⊢ e𝑖 : 𝜏𝑖 for all 𝑖 ∈ 1..𝑛 and 𝛤 = 𝛤1 + . . . + 𝛤𝑛 .

6. If e = e0.m(e1, . . . , e𝑛), then 𝛤0 ⊢ e0 : C and mtype(C,m) = Xthis, 𝜏
X1
1 . . .

. . . 𝜏
X𝑛
𝑛 → 𝜏 and 𝛤𝑖 ⊢ e𝑖 : 𝜏𝑖 for all 𝑖 ∈ 1..𝑛 and 𝛤 ′ = (Xthis · 𝛤0) + (X1 ·

𝛤1) + . . . + (X𝑛 · 𝛤𝑛).

7. If e = {𝜏 x = e; e′} then 𝛤 ′ = (X + {ℓ}) · 𝛤1 + 𝛤2 where ℓ is fresh and
𝛤1 ⊢ e : 𝜏 and 𝛤2, x :X 𝜏 ′ ⊢ e′ : 𝜏 ′.

Proof: 1. If D : 𝛤 ⊢ x : 𝜏 then, by Lemma 6.3.5, we know that exists a
derivation D′ : 𝛤 ′ ⊢ x : 𝜏 subderivation of D ending with a syntax-
directed rule and 𝛤 ′ ◀ 𝛤 . Since the last applied rule in D′ must be
(t-var), we have 𝛤 ′ = ∅ · 𝛤 ′′ + x :{r} 𝜏 ⊆̂ x :{r} 𝜏

2. If 𝛤 ⊢ k : 𝜏 then the last applied rule can be (t-const) or (t-prim). In
both cases we have the thesis

3. IfD : 𝛤 ⊢ e.f𝑖 : 𝜏 then, by Lemma 6.3.5, we know that exists a derivation
D′ : 𝛤 ′ ⊢ e.f𝑖 : 𝜏 subderivation of D ending with a syntax-directed
rule and 𝛤 ′ ◀ 𝛤 . Since the last applied rule in D′ must be (t-access)
we have that 𝛤 ′ ⊢ e : C with fields(C) = 𝜏1 f1; . . . 𝜏𝑛 f𝑛; and 𝜏𝑖 = 𝜏

4. If D : 𝛤 ⊢ e.f𝑖= e′ : 𝜏 then, by Lemma 6.3.5, we know that exists a
derivation D′ : 𝛤 ′ ⊢ e.f𝑖= e′ : 𝜏 subderivation of D ending with a
syntax-directed rule and 𝛤 ′ ◀ 𝛤 . Since the last applied rule in D′ must
be (t-assign), we have that 𝛤 ′ = 𝛥1 + 𝛥2 such that 𝛥1 ⊢ e : C and
𝛥2 ⊢ e′ : 𝜏𝑖 with fields(C) = 𝜏1 f1; . . . 𝜏𝑛 f𝑛; and 𝜏𝑖 = 𝜏

5. If D : 𝛤 ⊢ new C (e1, . . . , e𝑛) : C then, since the last applied rule in D
must be (t-new), we have that 𝛤 = 𝛥1 + ... + 𝛥𝑛 such that fields(C) =
𝜏1 f1; . . . 𝜏𝑛 f𝑛; and 𝛥𝑖 ⊢ e𝑖 : 𝜏𝑖 for all 𝑖 ∈ 1..𝑛.

6. If D : 𝛤 ⊢ e0.m(e1, . . . , e𝑛) : 𝜏 then, by Lemma 6.3.5, we know that

6.3 coeffects for sharing 103

exists a derivation D′ : 𝛤 ′ ⊢ e0.m(e1, . . . , e𝑛) : 𝜏 subderivation of D
ending with a syntax-directed rule and 𝛤 ′ ◀ 𝛤 . Since the last applied
rule in D′ must be (t-invk), we have 𝛥0 ⊢ e0 : C, mtype(C,m) =

Xthis, 𝜏
X1
1 . . . 𝜏

X𝑛
𝑛 → 𝜏 and 𝛥𝑖 ⊢ e𝑖 : 𝜏𝑖 for all 𝑖 ∈ 1..𝑛 and 𝛤 ′ = (Xthis ·

𝛥0) + (X1 · 𝛥1) + . . . + (X𝑛 · 𝛥𝑛).

7. If D : 𝛤 ⊢ {𝜏 x = e; e′} : 𝜏 ′ then, by Lemma 6.3.5, we know that exists a
derivation D′ : 𝛤 ′ ⊢ {𝜏 x = e; e′} : 𝜏 subderivation of D ending with a
syntax-directed rule and 𝛤 ′ ◀ 𝛤 . Since the last applied rule in D′ must
be (t-block), we have 𝛤 ′ = (X + {ℓ}) ·𝛥′ +𝛤 ′′ where ℓ is fresh 𝛥′ ⊢ e : 𝜏
and 𝛤 ′′, x :X 𝜏 ′ ⊢ e′ : 𝜏 ′.

□

lemma 6.3.7 : If 𝛤 is a closed context then, for all x, y ∈ dom(𝛤),
coeff(𝛤, x) ∩ coeff(𝛤, y) ≠ ∅ implies coeff(𝛤, x) = coeff(𝛤, y).

Proof: Immediate from the definition of _★. □

lemma 6.3.8 : Let 𝛤 be a closed context and 𝛥 = 𝛤, x :X 𝜏 . Then, for all
y ∈ dom(𝛥), we have

coeff(𝛥★, y) =
{⋃{coeff(𝛥, z) | coeff(𝛥, z) ∩ X ≠ ∅} coeff(𝛥, y) ∩ X ≠ ∅
coeff(𝛥, y) otherwise

Proof: Suppose 𝛤 = x1 :X1 𝜏1, . . . , x𝑛 :X𝑛 𝜏𝑛 with𝑛 ≥ 0, x :X 𝜏 = x𝑛+1 :X𝑛+1 𝜏𝑛+1
and set𝛩 = 𝑥1 :Y1 𝜏1, . . . , x𝑛+1 :Y𝑛+1 𝜏𝑛+1, where for all 𝑖 ∈ 1..𝑛 + 1, we have

Y𝑖 =

{⋃{X𝑗 | 𝑗 ∈ 1..𝑛 + 1,X𝑗 ∩ X𝑛+1 ≠ ∅} X𝑖 ∩ X𝑛+1 ≠ ∅
X𝑖 otherwise

The inequality𝛩 ⊆̂𝛥★ is trivial by definition of _★. We know that 𝛥 ⊆ 𝛩 , so
to get the other direction, we just have to show that𝛩 is closed. To this end,
let 𝑖 ∈ 1..𝑛 + 1, ℓ1 ∈ Y𝑖 and ℓ1, ℓ2 ∈ Y𝑗 for some 𝑗 ∈ 1..𝑛 + 1, then we have to
prove that ℓ2 ∈ Y𝑖 . We distinguish to cases.

• If X𝑗 ∩ X𝑛+1 = ∅, then Y𝑗 = X𝑗 . We observe that ℓ1 ∉ X𝑘 for any
𝑘 ∈ 1..𝑛 + 1 such that X𝑘 ∩ X𝑛+1 ≠ ∅. This is obvious for 𝑘 = 𝑛 + 1, as it
is against the assumption X𝑗 ∩ X𝑛+1 = ∅. For 𝑘 ∈ 1..𝑛, since 𝛤 is closed,
by Lemma 6.3.7, we would bet X𝑗 = X𝑘 , and so X𝑗 ∩ X𝑛+1 ≠ ∅, which is
again a contraddiction. This implies that X𝑖 ∩ X𝑛+1 = ∅ and so Y𝑖 = X𝑖 .
Therefore, applying again Lemma 6.3.7, we get Y𝑖 = X𝑖 = X𝑗 = Y𝑗 , thus
ℓ2 ∈ Y𝑖 , as needed.

• If X𝑗 ∩X𝑛+1 ≠ ∅, then we have Y𝑗 =
⋃{X𝑘 | 𝑘 ∈ 1..𝑛 + 1,X𝑘 ∩X𝑛+1 ≠ ∅},

hence ℓ1 ∈ Xℎ for some ℎ ∈ 1..𝑛 + 1 such that Xℎ ∩ X𝑛+1 ≠ ∅. By a

104 beyond structural coeffects

argument similar to the previous point, we get that X𝑖 ∩X𝑛+1 ≠ ∅, hence,
by definition, Y𝑖 = Y𝑗 that proves the thesis.

□

lemma 6.3.9 : [Inversion for context] If 𝛤 ⊢ E[e] : 𝜏 , then, for some 𝛤 ′, 𝛥,
x ∉ dom(𝛤), X and 𝜏 ′, we have 𝛤 = (X · 𝛥) + 𝛤 ′and 𝛤 ′ + x :X 𝜏 ′ ⊢ E[x] : 𝜏
and 𝛥 ⊢ e : 𝜏 ′.

Proof: The proof is by induction on E. We only show some cases, the others
are analogous.

E = [] Just take 𝛤 ′ = ∅, x ∉ dom(𝛤), X = {r}, 𝜏 ′ = 𝜏 and 𝛥 = 𝛤 .
E = E ′.f = e ′ By Lemma 6.3.6(4) we have a context 𝛤 ′ such that 𝛤 ′ ◀ 𝛤 ,
𝛤1 + 𝛤2 = 𝛤 ′, 𝛤1 ⊢ E′ [e] : C and 𝛤2 ⊢ e′ : 𝜏 . By induction hypothesis we
know that for some 𝛤 ′′, 𝛥, x ∉ dom(𝛤), X and 𝜏 ′, 𝛤1 = (X · 𝛥) + 𝛤 ′′,
𝛤 ′′ + x :X 𝜏 ′ ⊢ E′ [x] : C and 𝛥 ⊢ e : 𝜏 ′. We can assume x ∉ dom(𝛤)
(doing a step of renaming if needed).We get 𝛤1+𝛤2 = (X ·𝛥)+𝛤 ′′+𝛤2 = 𝛤 ′

and (𝛤2 + 𝛤 ′′) + x :X 𝜏 ′ ⊢ E′ [x].f = e′ : 𝜏 . We have two cases:

• 𝜏 = C We know that the last rule applied to derive 𝛤 ⊢ E[e] : 𝜏 is
(t-assign), so 𝛤 = 𝛤1 + 𝛤2 = 𝛤 ′, so we have the thesis

• 𝜏 = P We have two cases. If 𝛤 = 𝛤 ′ we have the same situation
as above so we have the thesis. If 𝛤 = {ℓ} · 𝛤 ′ then we have
𝛤 = {ℓ} · ((X · 𝛥) + 𝛤 ′′ + 𝛤2) = (({ℓ} · X) · 𝛥) + {ℓ} · (𝛤 ′′ + 𝛤2).
We can apply rule (t-prim) to (𝛤2 + 𝛤 ′′) + x :X 𝜏 ′ ⊢ E′ [x].f = e′ : 𝜏
to obtain {ℓ} · ((𝛤2 + 𝛤 ′′) + x :X 𝜏 ′) ⊢ E′ [x].f = e′ : 𝜏 . We know
{ℓ} · ((𝛤2 + 𝛤 ′′) + x :X 𝜏 ′) = {ℓ} · (𝛤2 + 𝛤 ′′) + x :{ℓ } ·X 𝜏 ′.

E = {𝜏 ′ x = E ′; e ′ } By Lemma 6.3.6(7) we have a context 𝛤 ′ such that
𝛤 ′ ◀ 𝛤 ,
𝛤 ′ = (X + {ℓ}) · 𝛤1 + 𝛤2 where ℓ is fresh and 𝛤1 ⊢ E′ [e] : 𝜏 and

𝛤2, x :X 𝜏 ′ ⊢ e′ : 𝜏 ′.
By induction hypothesis we know that for some 𝛤 ′′, 𝛥, y ∉ dom(𝛤),

Y and 𝜏 ′, 𝛤1 = (Y · 𝛥) + 𝛤 ′′, 𝛤 ′′ + y :Y 𝜏 ′ ⊢ E′ [y] : C and 𝛥 ⊢ e : 𝜏 ′.
We can assume y ∉ dom(𝛤) (doing a step of renaming if needed). We
get (X + {ℓ}) · 𝛤1 + 𝛤2 = (X + {ℓ}) · ((Y · 𝛥) + 𝛤 ′′) + 𝛤2 = (((X +
{ℓ}) · Y) · 𝛥) + ((X + {ℓ}) · 𝛤 ′′) + 𝛤2 = 𝛤 ′. By rule (t-block) we have
((X + {ℓ}) · 𝛤 ′′) + 𝛤2 + y :((X+{ℓ }) ·Y) 𝜏 ′ ⊢ E[y] : 𝜏 . We have two cases:

• 𝜏 = C We know that the last rule applied to derive 𝛤 ⊢ E[e] : 𝜏 is
(t-block), so 𝛤 = (X + {ℓ}) · 𝛤1 + 𝛤2 = 𝛤 ′, so we have the thesis

• 𝜏 = P We have two cases. If 𝛤 = 𝛤 ′ we have the same situation
as above so we have the thesis. If 𝛤 = {ℓ ′} · 𝛤 ′ then we have
𝛤 = {ℓ ′}·((X+{ℓ})·𝛤1+𝛤2) = ({ℓ ′}·(X+{ℓ})·𝛤1)+{ℓ ′}·𝛤2 = ((({ℓ ′}·
(X + {ℓ}) · Y) ·𝛥) + (({ℓ ′} · (X + {ℓ}) · 𝛤 ′′) + {ℓ ′} · 𝛤2. We can apply
rule (t-prim) to ((X + {ℓ}) ·𝛤 ′′) +𝛤2 +y :((X+{ℓ }) ·Y) 𝜏 ′ ⊢ E[y] : 𝜏 to
obtain {ℓ ′} · (((X +{ℓ}) ·𝛤 ′′) +𝛤2+y :𝜏 ′ ((X + {ℓ}) · Y)) ⊢ E[y] : 𝜏 .

6.3 coeffects for sharing 105

We know {ℓ ′} · (((X + {ℓ}) · 𝛤 ′′) + 𝛤2 + y :((X+{ℓ }) ·Y) 𝜏 ′) = ({ℓ ′} ·
(X + {ℓ}) ·𝛤 ′′) + {ℓ ′} ·𝛤2 +y :({ℓ ′ } · (X+{ℓ }) ·Y) 𝜏 ′ By ({ℓ ′} · (X + {ℓ}) ·
𝛤 ′′) + {ℓ ′} ·𝛤2 +y :({ℓ ′ } · (X+{ℓ }) ·Y) 𝜏 ′ ⊢ E[y] : 𝜏 we obtain the thesis.

□

lemma 6.3.10 : If 𝛥 ⊢ e : 𝜏 and 𝛤 + x :X 𝜏 ⊢ E[x] : 𝜏 ′, with x ∉ dom(𝛤),
then 𝛤 + X · 𝛥 ⊢ E[e] : 𝜏 ′.

Proof: By induction on the derivation of 𝛤 + x :X T ⊢ E[x] : T ′. □

lemma 6.3.11 : Let 𝛤 be a closed context and 𝛥 =
∑

x∈dom(𝛥) x :X 𝜏x and
such that dom(𝛥) ⊆ dom(𝛤) and links(𝛤) ∩ links(𝛥) = {r}. We have two
cases:

• r ∉ X
For all y ∈ dom(𝛤), if exists x ∈ dom(𝛥) such that coeff(𝛤, y)∩coeff(𝛤, x) ≠
∅ then coeff(𝛤 +𝛥, y) = X +∑

x∈𝛥 coeff(𝛤, x), otherwise coeff(𝛤 +𝛥, y) =
coeff(𝛤, y).

• r ∈ X
We define Y = coeff(𝛤, z) if r ∈ coeff(𝛤, z) and z ∈ dom(𝛤). For all y ∈
dom(𝛤), if exists x ∈ dom(𝛥) such that coeff(𝛤, y) ∩ coeff(𝛤, x) ≠ ∅ or
r ∈ coeff(𝛤, y) then coeff(𝛤 +𝛥, y) = X +∑

x∈𝛥 coeff(𝛤, x) +Y , otherwise
coeff(𝛤 + 𝛥, y) = coeff(𝛤, y).

lemma 6.3.12 : Let 𝛤↾𝛥 = 𝛥.

1. (X · 𝛤)↾(X · 𝛥) = X · 𝛥

2. If links(𝛩) ∩ (links(𝛥) ∪ links(𝛤)) = {r} or links(𝛩) ∩ (links(𝛥) ∪
links(𝛤)) = {r} ∪ X where exists x ∈ dom(𝛥) such that coeff(𝛥, x) = X
and dom(𝛩) ⊆ dom(𝛥), then (𝛤 +𝛩)↾(𝛥 +𝛩) = 𝛥 +𝛩 .

Proof: 1. Let x ∈ dom(𝛥) and coeff(𝛤, x) = X𝛤 and coeff(𝛥, x) = X𝛥 . By
definition of 𝛤↾𝛥 and 𝛤↾𝛥 = 𝛥, we have that X𝛤 ∩ links(𝛥) = X𝛥 . Let
Y be such that coeff(X · 𝛤, x) = Y , then Y = X ⊳ X𝛤 . We want to prove
that Y ∩ links(X ⊳𝛥) = X ⊳X𝛥 . Consider two cases: r ∉ X𝛤 and r ∈ X𝛤 .
In the first case Y = X𝛤 and Y ∩ (links(X ⊳ 𝛥)) = Y ∩ links(𝛥) = X𝛥 .
Moreover, since r ∉ X𝛥 we have X ⊳X𝛥 = X𝛥 . Therefore, Y ∩ (links(X ⊳

𝛥)) = X ⊳ X𝛥 .
In the second case Y = X ∪ (X𝛤 − {r}) and since r ∈ X𝛥 we have
X ⊳ X𝛥 = X ∪ (X𝛥 − {r}). From X𝛤 ∩ links(𝛥) = X𝛥 we get (X𝛤 −
{r}) ∩ links(𝛥) = X𝛥 − {r}. Note that X ⊆ links(X ⊳ 𝛥). Therefore
Y ∩ (links(X ⊳ 𝛥)) = X ∪ (X𝛥 − {r}) which proves the result.

2. We know𝛩 = ∪̂𝑛𝑖=0𝛩𝑖 , where for all 𝑖 ∈ [1...𝑛], in𝛩𝑖 all variables have
the same coeffect X𝑖 and, for all 𝑗, 𝑘 ∈ [1...𝑛] and 𝑗 ≠ 𝑘 , links(𝛩 𝑗) ∩
links(𝛩𝑘) = {r}. To obtain the thesis therefore we just need to prove
that the property holds summing one 𝛩𝑖 at a time, since 𝛤 + 𝛩 and

106 beyond structural coeffects

𝛥 +𝛩 can be obtained summing iteratively the𝛩𝑖s. It suffices to prove
the thesis only for the first sum. By 𝛤↾𝛥 = 𝛥 we have that for all
x ∈ dom(𝛥), coeff(𝛤, x) = Z ∪ coeff(𝛥, x), where Z ∩ links(𝛥) = ∅. By
Lemma 6.3.11 we have two cases for 𝛤 +𝛩𝑖 and 𝛥 +𝛩𝑖 :
• r ∉ X𝑖
For all y ∈ dom(𝛤), if exists x ∈ dom(𝛩𝑖) such that coeff(𝛤, y) ∩
coeff(𝛤, x) ≠ ∅ then coeff(𝛤 +𝛩𝑖 , y) = X +∑

x∈𝛩𝑖
coeff(𝛤, x) = X +∑

x∈𝛩𝑖
(coeff(𝛥, x) ∪Zx), otherwise coeff(𝛤 +𝛩𝑖 , y) = coeff(𝛤, y) =

Zy ∪ coeff(𝛥, y). For all y ∈ dom(𝛥), if exists x ∈ dom(𝛩𝑖) such
that coeff(𝛥, y) ∩ coeff(𝛥, x) ≠ ∅ then coeff(𝛥 + 𝛩𝑖 , y) = X +∑

x∈𝛩𝑖
coeff(𝛥, x), otherwise coeff(𝛥 + 𝛩𝑖 , y) = coeff(𝛥, y). By

𝛤↾𝛥 = 𝛥 we have that, for all x, y ∈ dom(𝛥),
coeff(𝛤, x)∩coeff(𝛤, y) ≠ ∅ if and only if coeff(𝛥, x)∩coeff(𝛥, y) ≠
∅. By these considerations we derive that, for all x ∈ dom(𝛤),
coeff(𝛤+𝛩𝑖 , x)∩links(𝛥+𝛩𝑖) = coeff(𝛥+𝛩𝑖 ,), that is, 𝛤+𝛩𝑖↾𝛥+𝛩𝑖 =
𝛥 +𝛩𝑖 .

• r ∈ X𝑖
We define Y = coeff(𝛤, z) if r ∈ coeff(𝛤, z) and z ∈ dom(𝛤). For
all y ∈ dom(𝛤), if exists x ∈ dom(𝛩𝑖) such that coeff(𝛤, y) ∩
coeff(𝛤, x) ≠ ∅ or r ∈ coeff(𝛤, y) then coeff(𝛤 + 𝛩𝑖 , y) = X ∪∑

x∈𝛩𝑖
coeff(𝛤, x)∪Y = X ∪∑

x∈𝛩𝑖
(coeff(𝛥, x)∪Zx)∪Y , otherwise

coeff(𝛤 + 𝛩𝑖 , y) = coeff(𝛤, y) = Zy ∪ coeff(𝛥, y). We define Y =

coeff(𝛥, z) if r ∈ coeff(𝛥, z) and z ∈ dom(𝛥). For all y ∈ dom(𝛥),
if exists x ∈ dom(𝛩𝑖) such that coeff(𝛥, y) ∩ coeff(𝛥, x) ≠ ∅ or
r ∈ coeff(𝛩𝑖 , y) then coeff(𝛥 +𝛩𝑖 , y) = X + ∑

x∈𝛩𝑖
coeff(𝛥, x) + Y ,

otherwise coeff(𝛤 +𝛩𝑖 , y) = coeff(𝛤, y). By 𝛤↾𝛥 = 𝛥 we have that,
for all x, y ∈ dom(𝛥), coeff(𝛤, x) ∩ coeff(𝛤, y) ≠ ∅ if and only if
coeff(𝛥, x)∩coeff(𝛥, y) ≠ ∅. By these considerationswe derive that,
for all x ∈ dom(𝛤), coeff(𝛤 +𝛩𝑖 , x) ∩ links(𝛥 +𝛩𝑖) = coeff(𝛥 +𝛩𝑖 ,),
that is, 𝛤 +𝛩𝑖↾𝛥 +𝛩𝑖 = 𝛥 +𝛩𝑖 .

□

lemma 6.3.13 (Substitution): If 𝛥 ⊢ e′ : 𝜏 ′ and 𝛤, x :X 𝜏 ′ ⊢ e : 𝜏 and
𝛥′ is 𝛥 with fresh renamed links, then 𝛤 ′ ⊢ e[e′/x] : 𝜏 with 𝛤 ′ such that
𝛤 ′ ⊆̂ X ⊳ 𝛥′ + 𝛤 .

Proof: By induction on the derivation of 𝛤, x :X 𝜏 ′ ⊢ e : 𝜏

(t-var) We know that 𝛤 = ∅ and X = {r}, hence the thesis follows from
the hypothesis 𝛥 ⊢ e′ : 𝜏 ′, as ∅ + {r} · 𝛥 = 𝛥 and x [e′/x] = e′.

(t-invk) We know that e = e0.m(e1, . . . , e𝑛), 𝛤 ⊆̂ +0≤𝑖≤𝑛X𝑖 · 𝛤𝑖 and
X ⊇ ∪0≤𝑖≤𝑛X𝑖 ⊳ X ′

𝑖 , where 𝛤𝑖 , x :X ′
𝑖
𝜏 ′ ⊢ e𝑖 : C𝑖 (0 ≤ 𝑖 ≤ 𝑛) and

mtype(C0,m) = X0, 𝜏
X1
1 . . . 𝜏

X𝑛
𝑛 → 𝜏 . By induction hypothesis we ob-

tain 𝛤𝑖 + (X ′
𝑖 · 𝛥′) ⊢ e𝑖 [e/x] : 𝜏𝑖 (0 ≤ 𝑖 ≤ 𝑛). Applying rule (t-invk) we

obtain

6.3 coeffects for sharing 107

+0≤𝑖≤𝑛X𝑖 · (𝛤𝑖 + X ′
𝑖 · 𝛥′) ⊢ e0.m(e1, . . . , e𝑛) [e/x] : 𝜏

Moreover, +0≤𝑖≤𝑛X𝑖 · (𝛤𝑖 + X ′
𝑖 · 𝛥′) = +0≤𝑖≤𝑛 (X𝑖 · 𝛤𝑖) + (X𝑖 ⊳ X ′

𝑖) · 𝛥′ and
+0≤𝑖≤𝑛 (X𝑖 ⊳ X ′

𝑖) · 𝛥′ = (∪0≤𝑖≤𝑛X𝑖 ⊳ X ′
𝑖) · 𝛥′.

Wewant to show that +0≤𝑖≤𝑛 (X𝑖 ·𝛤𝑖)+(∪0≤𝑖≤𝑛X𝑖 ⊳X ′
𝑖 ·𝛥′) ⊆̂ X ⊳ 𝛥′+𝛤 .

Knowing that 𝛤 ⊆̂ +0≤𝑖≤𝑛X𝑖 · 𝛤𝑖 and X ⊇ ∪0≤𝑖≤𝑛X𝑖 ⊳ X ′
𝑖 we derive

+0≤𝑖≤𝑛 (X𝑖 · 𝛤𝑖) + (∪0≤𝑖≤𝑛X𝑖 ⊳ X ′
𝑖 · 𝛥′) ⊆̂ X ⊳ 𝛥′ + 𝛤 .

(t-new) We know that e = new C(e1, . . . , e𝑛), 𝛤 ⊆̂ +1≤𝑖≤𝑛𝛤𝑖 and X ⊇
∪1≤𝑖≤𝑛X𝑖 and 𝛤𝑖 , x :X𝑖 𝜏 ′ ⊢ e𝑖 : 𝜏𝑖 (1 ≤ 𝑖 ≤ 𝑛). By inductive hypothesis
𝛤𝑖 + (X𝑖 · 𝛥′) ⊢ e𝑖 [e′/x] : 𝜏𝑖 , (1 ≤ 𝑖 ≤ 𝑛). Applying rule (t-new) we
obtain +1≤𝑖≤𝑛𝛤𝑖 + (X𝑖 · 𝛥′) ⊢ new C(e1, . . . , e𝑛)[e′/x] : 𝜏1.

We know +1≤𝑖≤𝑛𝛤𝑖 +(X𝑖 ·𝛥′) = +1≤𝑖≤𝑛𝛤𝑖 ++1≤𝑖≤𝑛 (X𝑖 ·𝛥′) = +1≤𝑖≤𝑛𝛤𝑖 +
(∪1≤𝑖≤𝑛X𝑖 · 𝛥′).
We want to show that +1≤𝑖≤𝑛𝛤𝑖 + (∪1≤𝑖≤𝑛X𝑖 · 𝛥′) ⊆̂ X ⊳ 𝛥′ + 𝛤 . By

X ⊇ ∪1≤𝑖≤𝑛X𝑖 and 𝛤 ⊆̂ +1≤𝑖≤𝑛𝛤𝑖 we derive X ⊳ 𝛥′ + 𝛤 ⊆̂ +1≤𝑖≤𝑛𝛤𝑖 +
(∪1≤𝑖≤𝑛X𝑖 · 𝛥′).

(t-block) We know that e = {𝜏 x = e1; e2} and 𝛤1, x :X1 𝜏
′ ⊢ e1 : 𝜏 ′′ and

𝛤2, x :X2 𝜏
′, y :Y 𝜏 ′′ ⊢ e2 : 𝜏 and

𝛤, x :X 𝜏 ′ = (Y ∪ {ℓ}) · (𝛤1, x :X1 𝜏
′) + (𝛤2, x :X2 𝜏

′)

where ℓ is fresh. Then, in particular, we have 𝛤 ⊆̂ (Y ∪ {ℓ}) · 𝛤1 + 𝛤2 and
X ⊇ (Y∪{ℓ}) ⊳X1∪X2. We want to prove that 𝛤 ′ ⊢ {𝜏 x = e1; e2}[e′/x] :
𝜏 where

𝛤 ′ = ((Y ∪ {ℓ}) ⊳ X1 ∪ X2) · 𝛥′ + (Y ∪ {ℓ}) · 𝛤1 + 𝛤2

then the thesis will follow by subsumption. By induction hypothesis, we
get 𝛤1+X1 ·𝛥′ ⊢ e1 [e′/x] : 𝜏 ′′ and (𝛤2, y :Y 𝜏 ′′) +X2 ·𝛥′ ⊢ e2 [e′/x] : 𝜏 . By
definition of +we have (𝛤2, y :Y 𝜏 ′′) +X2 ·𝛥′ = (𝛤2 + X2 · 𝛥′, y :Y 𝜏 ′′)★ =

𝛩, y :Y ′ 𝜏 ′′ for some𝛩 and Y ′. By Lemma 6.3.8 we know that Y ′ is the
union of all coeffects in 𝛤2 + X2 · 𝛥′ that are not disjoint from Y .
Then, by rule (t-block), we derive 𝛤 ′′ ⊢ {𝜏 ′′ y = e1; e2}[e/x] : 𝜏

with
𝛤 ′′ = (Y ′ ∪ {ℓ}) · (𝛤1 + X1 · 𝛥′) + 𝛤2 + X2 · 𝛥′

Since Y ⊆ Y ′, we have

𝛤 ′′ = Y ′ · (𝛤1 + X1 · 𝛥′) + (Y ∪ {ℓ}) · (𝛤1 + X1 · 𝛥′) + 𝛤2 + X2 · 𝛥′

Since the links in 𝛥′ are fresh, we have that X2 · 𝛥′ = X2 ⊳ 𝛥
′, that is,

X2∩ links(𝛥′) ⊆ {r} so X2 ·𝛥′ is equal to 𝛥′ except that in coeffects r is
replacedwith links inX2. Moreover, by Lemma 6.3.7X2 = Y orX2∩Y = ∅.
Therefore, for all z ∈ dom(X2 · 𝛥′), either Y ⊆ coeff(X2 · 𝛥′, z) or
Y ∩ coeff(X2 · 𝛥′, z) = ∅. Applying Lemma 6.3.8 we get𝛩 = 𝛤2 + X2 · 𝛥′

and Y ′ = coeff(𝛩, z) if Y ⊆ coeff(𝛩, z) for all z ∈ dom(𝛩). For all
z ∈ dom(𝛤1+X1 ·𝛥′) such that r ∈ coeff(𝛤1+X1 ·𝛥′, z), we have that Y ⊆
coeff((Y∪{ℓ}) · (𝛤1+X1 ·𝛥′), z). Since (Y∪{ℓ}) · (𝛤1+X1 ·𝛥′)+𝛤2+X2 ·𝛥′

108 beyond structural coeffects

is closed and Y ′ is the union of all coeffects in 𝛤2 + X2 · 𝛥′ that are not
disjoint from Y we get that Y ⊆ coeff((Y ∪{ℓ}) · (𝛤1+X1 ·𝛥′), z) implies
Y ′ ⊆ coeff((Y ∪ {ℓ}) · (𝛤1 + X1 · 𝛥′) + 𝛤2 + X2 · 𝛥′, z).
Instead, if r ∉ coeff(𝛤1+X1·𝛥′, z), then coeff(Y ′ ⊳̂ (𝛤1+X1·𝛥′), z) =

coeff(𝛤1 + X1 · 𝛥′, z). Therefore

Y ′ ⊳̂ (𝛤1 + X1 · 𝛥′) ⊆̂ (Y ∪ {ℓ}) · (𝛤1 + X1 · 𝛥′) + 𝛤2 + X2 · 𝛥′

and so 𝛤 ′′ = (Y ∪ {ℓ}) · (𝛤1 + X1 · 𝛥′) + 𝛤2 + X2 · 𝛥′.
Finally

𝛤 ′′ = (Y ∪ {ℓ}) · (𝛤1 + X1 · 𝛥′) + 𝛤2 + X2 · 𝛥′

= ((Y ∪ {ℓ}) · X1) · 𝛥′ + X2 · 𝛥′ + (Y ∪ {ℓ}) · 𝛤1 + 𝛤2
= ((Y ∪ {ℓ}) ⊳ X1 ∪ X2) · 𝛥′ + (Y ∪ {ℓ}) · 𝛤1 + 𝛤2

We want to show that ((Y ∪ {ℓ}) ⊳X1 ∪X2) ·𝛥′ + (Y ∪ {ℓ}) · 𝛤1 + 𝛤2 ⊆̂
X · 𝛥′ + 𝛤 . Since X ⊇ (Y ∪ {ℓ}) ⊳ X1 ∪ X2 and 𝛤 ⊆̂ (Y ∪ {ℓ}) · 𝛤1 + 𝛤2
we derive ((Y ∪ {ℓ}) ⊳ X1 ∪ X2) · 𝛥′ + (Y ∪ {ℓ}) · 𝛤1 + 𝛤2 ⊆̂ X · 𝛥′ + 𝛤 .

□

proof of Theorem 6.3.3
Proof: If 𝛤 ′ ⊢ e |𝜇 : 𝜏 , we have 𝛤 ′ = 𝛤 ′

1 + 𝛤2, 𝛤 ′
1 ⊢ e : 𝜏 and 𝛤2 ⊢ 𝜇. We

know that 𝛤2 = 𝛤𝜇 +𝛩 , where 𝛤𝜇 = x1 :{ℓ1} 𝜏1, . . . , x𝑛 :{ℓ𝑛 } 𝜏𝑛 ,𝛩 =
∑𝑛
𝑖=1 ℓ𝑖 ·𝛩𝑖 ,

𝛩𝑖 ⊢ 𝜇 (x𝑖) : 𝜏𝑢 and ℓ1, . . . , ℓ𝑛 are fresh links. We also know that 𝛤2 = 𝛤𝜇 +𝛩 ,
where 𝛤𝜇 = x1 :{ℓ1} 𝜏1, . . . , x𝑛 :{ℓ𝑛 } 𝜏𝑛 , 𝛩 =

∑𝑛
𝑖=1 ℓ𝑖 · 𝛩𝑖 , 𝛩𝑖 ⊢ 𝜇 (x𝑖) : 𝜏𝑢 and

ℓ1, . . . , ℓ𝑛 are fresh links. We also know that by Lemma 6.3.5 𝛤1 ⊢ e : 𝜏
with 𝛤1 ◀ 𝛤 ′

1 . In the proof below we prove the theorem with as hypothesis
𝛤 ⊢ e |𝜇 : 𝜏 where 𝛤 = 𝛤1+𝛤2 obtaining that 𝛥 ⊢ e′ |𝜇′ : 𝜏 and 𝛤 +𝛥↾𝛤 = 𝛤 . We
also know that 𝛥 = 𝛤3 + 𝛤4 and 𝛤3 ⊢ e : 𝜏 and 𝛤4 ⊢ 𝜇′. If 𝛤1 = 𝛤 ′

1 we have also
the thesis. If 𝛤 ′

1 = {ℓ} ·𝛤1 then we can apply the same non syntx directed rules
applied to 𝛤1 ⊢ e : 𝜏 obtaining {ℓ} ⊳ 𝛤3 ⊢ e′ : 𝜏 and so, since r ∉ links(𝛤4),
{ℓ} ⊳ 𝛥 ⊢ e |𝜇 : 𝜏 . By Lemma 6.3.12 we have that {ℓ} · (𝛤 +𝛥)↾{ℓ} ·𝛤 = {ℓ} ·𝛤 ,
that is, the thesis. The proof is by induction on the reduction relation.

(field-access) We know that x.f𝑘 |𝜇 → v𝑘 |𝜇, hence e = x.f𝑘 , e′ = v𝑘
and 𝜇′ = 𝜇. We know that 𝜇 (x) = new C(v1, . . . , v𝑘 , . . . , v𝑚) with
k ∈ 1..𝑚. Since x ∈ dom(𝜇) we know exists an ℎ ∈ 1..𝑛 such that
x = xℎ and so 𝛩ℎ ⊢ 𝜇 (x) : 𝜏ℎ . By Lemma 6.3.6(5) we know that 𝛩ℎ =∑𝑚
𝑖=1𝛩

′
𝑖 such that 𝛩 ′

𝑖 ⊢ v𝑖 : 𝜏𝑖 . By this consideration we derive that
𝛩 ′
𝑘
⊢ v𝑘 : 𝜏𝑘 . We know that 𝛤 ⊆̂ {ℓℎ} · 𝛩ℎ ⊆̂ {ℓℎ} ⊳ 𝛩ℎ . For all y ∈

dom(𝛩ℎ) we know coeff({ℓℎ} ⊳ 𝛩ℎ, y) = (coeff(𝛩ℎ, y) \ {r}) ∪ {ℓℎ} if
r ∈ coeff(𝛩ℎ, y), coeff({ℓℎ} ⊳𝛩ℎ, y) = coeff(𝛩ℎ, y) otherwise. We know
that {r, ℓℎ} ⊆ coeff(𝛤, x), so, since 𝛤 is closed and 𝛤 ⊆̂ {ℓℎ} ⊳𝛩ℎ , for
all y ∈ dom({ℓℎ} ⊳𝛩ℎ), ℓℎ ∈ coeff({ℓℎ} ⊳𝛩ℎ, y) implies r ∈ coeff(𝛤, y)
and so coeff(𝛤, y) ⊇ (coeff(𝛩ℎ, y) \ {r}) ∪ {ℓℎ} ∪ {r} ⊇ coeff(𝛩ℎ, y).
By these considerations we derive that 𝛤 ⊆̂ 𝛩ℎ . We can apply rule (t-
conf) obtaining 𝛤2 + 𝛩 ′

𝑘
⊢ v𝑘 |𝜇′ : 𝜏𝑘 . Since 𝛤 = 𝛤 + 𝛤2 + 𝛩 ′

𝑘
we have

6.3 coeffects for sharing 109

(𝛤 + 𝛤2 +𝛩 ′
𝑘
)↾𝛤 = 𝛤↾𝛤 = 𝛤 we have the thesis.

(field-assign) We know that x.f𝑘= v |𝜇 → v |𝜇x .𝑘=v , hence e = x.f𝑘= v,
e′ = v and 𝜇′ = 𝜇x .𝑘=v . By Lemma 6.3.6(4), we get 𝛤1 = 𝛥1+𝛥2,𝛥1 ⊢ x : C,
𝛥2 ⊢ v : 𝜏 , and fields(C) = 𝑆1 f1;, . . . , 𝑆𝑚 f𝑚; with 𝑘 ∈ 1..𝑚. Again by
Lemma 6.3.6(1), we get 𝛥1 = x :{r} C. We know that 𝜇 (z) = 𝜇′(z)
for all z ∈ dom(𝜇) \ {x} and 𝜇 (x) = new C(v1, . . . , v𝑚) and 𝜇′(x) =

newC(v1, . . . , v𝑘−1, v, v𝑘+1, . . . , v𝑚). Since x ∈ dom(𝜇), there isℎ ∈ 1..𝑛
such that x = xℎ and so 𝛩ℎ ⊢ 𝜇 (x) : 𝜏ℎ holds, with 𝜏ℎ = C. Applying
Lemma 6.3.6(5), we derive that 𝛩ℎ = 𝛴𝑚𝑖=1𝛩

′
𝑖 and 𝛩 ′

𝑖 ⊢ v𝑖 : 𝑆𝑖 , for all
𝑖 ∈ 1..𝑚. By these considerations and applying rule (t-new) we obtain
𝛴𝑘−1𝑖=1 𝛩

′
𝑖 + 𝛥2 + 𝛴𝑚

𝑖=𝑘+1𝛩
′
𝑖 ⊢ new C(v1, . . . , v𝑘−1, v, v𝑘+1, . . . , v𝑚) : C.

Applying rule (t-mem)we can typememory 𝜇′, deriving 𝛤𝜇+(
∑ℎ−1
𝑖=1 {ℓ𝑖}·

𝛩𝑖) + ({ℓℎ} · (𝛴𝑘−1𝑖=1 𝛩
′
𝑖 + 𝛥2 + 𝛴𝑚

𝑖=𝑘+1𝛩
′
𝑖)) + (∑𝑛

𝑖=ℎ+1{ℓ𝑖} · 𝛩𝑖) ⊢ 𝜇′ with
coeff(𝛤𝜇, x) = {ℓx}. We know 𝛤𝜇 + (

∑ℎ−1
𝑖=1 {ℓ𝑖} ·𝛩𝑖) + ({ℓℎ} · (𝛴𝑘−1𝑖=1 𝛩

′
𝑖 +𝛥2+

𝛴𝑚
𝑖=𝑘+1𝛩

′
𝑖))+(

∑𝑛
𝑖=ℎ+1{ℓ𝑖}·𝛩𝑖) = 𝛤𝜇+(

∑ℎ−1
𝑖=1 {ℓ𝑖}·𝛩𝑖)+{ℓℎ}·𝛴𝑘−1𝑖=1 𝛩

′
𝑖 +{ℓℎ} ⊳

𝛥2 + {ℓℎ} ⊳ 𝛴𝑚
𝑖=𝑘+1𝛩

′
𝑖 + (∑𝑛

𝑖=ℎ+1{ℓ𝑖} · 𝛩𝑖). We have two cases for all
y ∈ dom(𝛥2):
• r ∈ coeff(𝛥2, y)
We have coeff({ℓℎ} ⊳ 𝛥2, y) = (coeff(𝛥2, y) \ {r}) ∪ {ℓℎ}. We have
{r, ℓℎ} ⊆ coeff(𝛤, x), and, since 𝛤 ⊆̂ 𝛥2 we know coeff(𝛤, y) ⊇
coeff(𝛥2, y) and in particular r ∈ coeff(𝛤, y). By the fact that 𝛤 is
closed we know that ℓℎ ∈ coeff(𝛤, y). We can also conclude that
coeff(𝛤, y) ⊇ coeff(𝛥2, y) ∪ {ℓℎ} ⊇ (coeff(𝛥2, y) \ {r}) ∪ {ℓℎ}.

• r ∉ coeff(𝛥2, y)
We have coeff({ℓℎ} ⊳ 𝛥2, y) = coeff(𝛥2, y). Since 𝛤 ⊆̂ 𝛥2 we derive
coeff(𝛤, y) ⊇ coeff(𝛥2, y).

By these considerations we have that {ℓℎ} ⊳ 𝛥2 ⊆̂ 𝛤 , so {ℓℎ} ⊳ 𝛥2 ⊆̂ 𝛤 .
Since 𝛤𝜇 ⊆̂ 𝛤 , (∑ℎ−1

𝑖=1 {ℓ𝑖} · 𝛩𝑖) ⊆̂ 𝛤 , {ℓℎ} · 𝛴𝑘−1𝑖=1 𝛩
′
𝑖 ⊆̂ 𝛤 , {ℓℎ} ⊳ 𝛥2 ⊆̂

𝛤 ,{ℓℎ} ⊳ 𝛴𝑚𝑖=𝑘+1𝛩
′
𝑖 ⊆̂ 𝛤 , (∑𝑛

𝑖=ℎ+1{ℓ𝑖} ·𝛩𝑖) ⊆̂ 𝛤 . We derive 𝛤𝜇 + (∑ℎ−1
𝑖=1 {ℓ𝑖} ·

𝛩𝑖) + {ℓℎ} · 𝛴𝑘−1𝑖=1 𝛩
′
𝑖 + {ℓℎ} ⊳ 𝛥2 + {ℓℎ} ⊳ 𝛴𝑚𝑖=𝑘+1𝛩

′
𝑖 + (∑𝑛

𝑖=ℎ+1{ℓ𝑖} ·𝛩𝑖) ⊆̂ 𝛤 .
Applying rule (t-conf), we obtain 𝛥 = 𝛤𝜇 + (∑ℎ−1

𝑖=1 {ℓ𝑖} · 𝛩𝑖) + {ℓℎ} ·
𝛴𝑘−1𝑖=1 𝛩

′
𝑖 + {ℓℎ} ⊳ 𝛥2 + {ℓℎ} ⊳ 𝛴𝑚𝑖=𝑘+1𝛩

′
𝑖 + (∑𝑛

𝑖=ℎ+1{ℓ𝑖} ·𝛩𝑖) + 𝛥2. We know
that 𝛤 + 𝛥 = 𝛤 . By the fact that 𝛥 + 𝛤↾𝛤 = 𝛤↾𝛤 = 𝛤 we obtain the
thesis.

(new) Weknow thatnew C (v1, . . . , v𝑛) |𝜇 → x |𝜇, x ↦→ new C (v1, . . . , v𝑛)
with x ∉ dom(𝜇) hence e = new C (v1, . . . , v𝑛), e′ = x and 𝜇′ = 𝜇, x ↦→
new C (v1, . . . , v𝑛). Since we have 𝜇 (y) = 𝜇′(y) for all y ∈ dom(𝜇) and
dom(𝜇′) = dom(𝜇) ∪ {x} and 𝜇′(x) = new C (v1, . . . , v𝑛) we can ap-
ply rule (t-mem) deriving 𝛤𝜇 + x :ℓ𝑚+1C +𝛩 + (ℓ𝑚+1 · 𝛤1) ⊢ 𝜇′ , where
𝛤1 ⊢ 𝜇′(x) : C, ℓ𝑚+1 fresh and ℓ𝑚+1 ∉ links(𝛤). By rule (t-var) we know
x :{r} C ⊢ x : C. By rule (t-conf) we derive 𝛥 = 𝛤𝜇 + x :C {ℓ𝑚+1} +𝛩 +
({ℓ𝑚+1} ·𝛤1) +x :{r} C and 𝛤𝜇 +x :C {ℓ𝑚+1}+𝛩 + ({ℓ𝑚+1} ·𝛤1) +x :{r} C ⊢
x |𝜇′ : C. We know 𝛤+𝛥 = 𝛤𝜇+x :{ℓ𝑚+1} C+𝛩+({ℓ𝑚+1}·𝛤1)+x :{r} C+𝛤 =

110 beyond structural coeffects

𝛤 + x :{r,ℓ𝑚+1} C + ({ℓ𝑚+1} · 𝛤1). We know that ℓ𝑚+1 ∉ coeff(𝛤, y) for all
y ∈ dom(𝛤) and we know that, since 𝛤 is closed, r ∈ coeff(𝛤, y) and
r ∈ coeff(𝛤, z) implies coeff(𝛤, y) = coeff(𝛤, z) for all y, z ∈ dom(𝛤).
We also know that x ∉ dom(𝛤), so 𝛤+x :{ℓ𝑚+1,r} C = (𝛤, x :{ℓ𝑚+1,r} C)★ =

𝛤 ′, x :X C. By Lemma 6.3.8 and by the observations above we have 2
cases for all y ∈ dom(𝛤):
• r ∉ coeff(𝛤, y) implies coeff(𝛤 ′, y) = coeff(𝛤, y)
• r ∈ coeff(𝛤, y) implies coeff(𝛤 ′, y) = coeff(𝛤, y) ∪ {ℓ𝑚+1, r} =

coeff(𝛤, y) ∪ {ℓ𝑚+1}
We know 𝛤1 ⊆̂ 𝛤 ⊆̂ 𝛤 ′ and (𝛤 ′, x :X C) + ({ℓ𝑚+1} · 𝛤1) = (𝛤 ′, x :X C) +
({ℓ𝑚+1} ⊳ 𝛤1).
If r ∈ coeff(𝛤1, y) then coeff({ℓ𝑚+1} ⊳ 𝛤1, y) = (coeff(𝛤1, y) \ {r}) ∪

{ℓ𝑚+1} and, since r ∈ coeff(𝛤, y), coeff(𝛤 ′, y) = coeff(𝛤, y) ∪ {ℓ𝑚+1} ⊇
coeff(𝛤1, y) ∪ {ℓ𝑚+1} for all y ∈ dom(𝛤1). if r ∉ coeff(𝛤1, y) then
coeff({ℓ𝑚+1} ⊳ 𝛤1, y) = coeff(𝛤1, y) ⊆ coeff(𝛤 ′, y) for all y ∈ dom(𝛤1).
By these observations we can conclude that (𝛤 ′, x :X C) + ({ℓ𝑚+1 ⊳𝛤1}) =
𝛤 ′, x :X C = 𝛤 +𝛥. By the fact that ℓ𝑚+1 ∉ links(𝛤) and coeff(𝛤 +𝛥, z) =
coeff(𝛤, z) or coeff(𝛤 + 𝛥, z) = coeff(𝛤, z) ∪ {ℓ𝑚+1} for all z ∈ dom(𝛤)
we derive that (𝛤 + 𝛥)↾𝛤 = 𝛤 , that is, the thesis.

(ctx) Wehave e = E[e1] and e′ = E[e′1] and e1 |𝜇 → e′1 |𝜇′. By Lemma 6.3.9,
𝛤1 = 𝛥1 + X · 𝛥2, 𝛥1 + x :X 𝜏 ′ ⊢ E[x] : 𝜏 and 𝛥2 ⊢ e1 : 𝜏 ′ and we
can impose that if ℓ ∈ coeff(𝛥1, x) and ℓ ∈ X then coeff(𝛥1, x) = X .
We get 𝛤 = 𝛤1 + 𝛤2 = 𝛥1 + X · 𝛥2 + 𝛤2 and, since r ∉ coeff(𝛤2, y)
for every y ∈ dom(𝛤2) by rule (t-mem) we have 𝛤2 = X · 𝛤2, hence
𝛤 = 𝛥1 + X · (𝛥2 + 𝛤2). We set 𝛤 ′ = 𝛥2 + 𝛤2. By induction hypothesis,
we get 𝛥′ ⊢ e′1 |𝜇′ : 𝜏 ′ with 𝛥′ + 𝛤 ′↾𝛤 ′ = 𝛤 ′. By rule (t-conf), we know
that 𝛥′ = 𝛥′

1 + 𝛥′
2 with 𝛥′

1 ⊢ e′1 : 𝜏 ′ and 𝛥′
2 ⊢ 𝜇′. By Lemma 6.3.10, we

get 𝛥1 + X · 𝛥′
1 ⊢ E[e′1] : 𝜏 and so 𝛥1 + X · 𝛥′

1 + 𝛥′
2 ⊢ E[e′1] |𝜇′ : 𝜏 . We

have 𝛥 = 𝛥1 + X · 𝛥′
1 + 𝛥′

2 = 𝛥1 + X · 𝛥′
1 + X · 𝛥′

2 = 𝛥1 + X · 𝛥′. We
get the thesis, that is, 𝛥 + 𝛤↾𝛤 = 𝛤 , by Lemma 6.3.12, since links(𝛥1) ∩
(links(X ⊳ (𝛥′ + 𝛤 ′)) ∪ links(X ⊳ 𝛤 ′)) = {r} or links(𝛥1) ∩ (links(X ⊳

(𝛥′ + 𝛤 ′)) ∪ links(X ⊳ 𝛤 ′)) = {r} ∪ X if exists x ∈ dom(𝛥) such that
coeff(𝛥, x) = X and dom(𝛥1) ⊆ dom(𝛤r) ⊆ dom(X · 𝛤 ′).

(block) {𝜏 x = v; e}|𝜇 → e[v/x] |𝜇 Applying Lemma 6.3.6(7) we obtain
𝛤 ′, x :X 𝜏 ⊢ e : 𝜏 ′ and 𝛴 ⊢ v : 𝜏 such that 𝛤1 = (X ∪ {ℓ}) · 𝛴 + 𝛤 ′. If v is
a reference then by Lemma 6.3.6(1) we know 𝛴 = x :{r} 𝜏 otherwise if
v is a primitive value then we know by (t-primitive) 𝛴 = ∅. Applying
Lemma 6.3.13 we obtain 𝛤 ′′ ⊢ e[v/x] : 𝜏 ′ and 𝛤 ′′ ⊆̂ (X ∪ {ℓ}) · 𝛴 + 𝛤 ′.
Knowing that 𝛤 ′′ + 𝛤2 + 𝛤 = 𝛥 + 𝛤 = 𝛤 we obtain 𝛤↾𝛤 = 𝛤 , that is, the
thesis.

□

corollary 6.3.14 : If 𝛤 ⊢ e |𝜇 : 𝜏 and ⟨e, 𝜇⟩ →★ ⟨e′, 𝜇′⟩, then 𝛥 ⊢ e′ |𝜇′ : 𝜏
for some 𝛥 such that (𝛤 + 𝛥)↾𝛤 = 𝛤 .

6.4 case study: type modifiers for uniqeness and immutability 111

Indeed, coeffects in 𝛤 + 𝛥 model the combined sharing before and after
the computation step, hence the requirement (𝛤 + 𝛥)↾𝛤 = 𝛤 ensures that, on
variables in 𝛤 , the sharing remains the same. That is, the context 𝛥 cannot
connect variables that were disconnected in 𝛤 .
Thanks to the fact that reduction preserves (initial) sharing, we can static-

ally detect lent references (Definition 6.2.3) and capsule expressions (Defini-
tion 6.2.4) just looking at coeffects, as stated below.

theorem 6.3.15 (Lent reference): If 𝛤 ⊢ e |𝜇 : C, x ∈ dom(𝛤) with
r ∉ coeff(𝛤, x), and e |𝜇 →★ y |𝜇′, then x ⊲⊳𝜇′ y does not hold.

Proof: By Theorem 6.3.3 we have 𝛥 ⊢ y |𝜇′ : C, for some 𝛥 such that
(𝛤 + 𝛥)↾𝛤 = 𝛤 . By inversion, we have y :{r} C ⊢ y : C with 𝛥 = 𝛥′ +
y :{r} C, hence r ∈ coeff(𝛥, y). Assume x ⊲⊳𝜇′ y. By Lemma 6.3.2, we have
coeff(𝛥, x) = coeff(𝛥, y), thus r ∈ coeff(𝛥, x). Since (𝛤 + 𝛥)↾𝛤 = 𝛤 , r ∈
coeff(𝛤 + 𝛥, x) and x ∈ dom(𝛤), we also have r ∈ coeff(𝛤, x), contradicting
the hypothesis. □

We write capsule(𝛤) if, for each x ∈ dom(𝛤), r ∉ coeff(𝛤, x), that is, x
is lent. The theorem above immediately implies that an expression which is
typable in such a context is a capsule.

corollary 6.3.16 (Capsule expression): If 𝛤 ⊢ e |𝜇 : C, with capsule(𝛤),
and e |𝜇 →★ y |𝜇′, then, for all x ∈ dom(𝛤), x ⊲⊳𝜇′ y does not hold.

Proof: Let x ∈ dom(𝛤).
The hypothesis capsule(𝛤) means that each variable in 𝛤 is lent, in the

sense of Theorem 6.3.15, that is, r ∉ coeff(𝛤, x). Then, by Theorem 6.3.15,
x ⊲⊳𝜇′ y does not hold.

□

Note that, in particular, Corollary 6.3.16 ensures that no free variable of e
can access the reachable object graph of the final result y. Notice also that
assuming capsule(𝛤) is the same as assuming capsule(𝛥) where 𝛤 = 𝛥 + 𝛥′

and 𝛥 is the context that types the expression e, because no r link can occur
in the context that types the memory.

6.4 Case study: type modifiers for uniqueness and
immutability
The coeffect system in the previous section tracks sharing among variables
possibly introduced by reduction. In this section, we check the effectiveness
of the approach to model specific language features related to sharing and
mutation, taking as challenging case study those proposed by Giannini et al.
[32, 33], whose common key ideas are the following:

112 beyond structural coeffects

• types are decorated bymodifiersmut (default, omitted in code), read, caps,
and imm for read-only, capsule, and immutable, respectively, allowing
the programmer to specify the corresponding contraints/properties for
variables/parameters and method return types

• mut (resp. read) expressions can be transparently promoted to caps (resp.
imm)

• caps expressions can be assigned to either mutable or immutable refer-
ences.

For instance, consider the following version of Example 6.2.5 decorated with
modifiers:

example 6.4.1 :

class B {int f; B clone [read{ℓ }] () {new B(this.f)} // ℓ ≠ R

class A { B f;

A mix [{ R }] (A { R } a) {this.f=a.f; a}

// this, a and the result linked

A clone [read{ℓ }] () {new A(this.f.clone()) } // ℓ ≠ R

}
A a1=new A(new B(0));
read A mycaps = {A a2 = new A(new B(1));

a1.mix(a2).clone()// (1)
// a1.mix(a2).clone().mix(a2) // (2)

}
// mycaps.f.f= 3 // (3)
a1.f.f=3 // (4)

The modifier of this in mix needs to be mut, whereas in clone it is read to
allow invocations on arguments with any modifier. The result modifier in mix
is that of the parameter a, chosen to be mut since read would have made the
result of the call less usable. The result modifier of clone could be caps, but
even if it is mut, the fact that there is no connection between the result and
this is expressed by the coeffect. The difference is that with modifier caps
promotion takes place when typechecking the body of the method, whereas
with modifier mut it takes place at the call site.

As expected, an expression with type tagged read cannot occur as the left-
hand side of a field assignment. To have the guarantee that a portion of memory
is immutable, a type system should be able to detect that it cannot be modified
through any possibile reference. In the example, since mycaps is declared
read, line (3) is ill-typed. However, if we replace line (1) with line (2), since
in this case mycaps and a1 share their f field, the same effect of line (3) can
be obtained by line (4). As previously illustrated, the sharing coeffect system
detects that only in the version with line (1) does mycaps denote a capsule.
Correspondingly, in the enhanced type system in this section, mycaps can
be correctly declared caps, hence imm as well, whereas this is not the case
with line (2). By declaring mycaps of an imm type, the programmer has the

6.4 case study: type modifiers for uniqeness and immutability 113

caps

mut imm

read

𝜎 𝜎 ′

Arrows:
Subtype
Promotion

figure 6.5 Type modifiers and their relationships

guarantee that the portion of memory denoted by mycaps cannot be modified
through another reference. That is, the immutability property is detected as a
conjunction of the read-only restriction and the capsule property.
Assume now that mycaps is declared caps rather than read. Then, line (3)

is well-typed. However, if mycaps could be assigned to both a mutable and an
immutable reference, e.g:

Aimm imm = mycaps;
mycaps.f.f=3

the immutability guarantee for imm would be broken. For this reason, capsules
can only be used linearly in the following type system.

We formalize the features illustrated above by building, on top of that of
the previous section, a type-and-coeffect system whose key advantage is that
detection of caps and imm types is straightforward from the coeffects, through
a simple promotion4 rule, since they exactly express the desired properties.
Type-and-coeffect contexts are, as before, of shape x1 :X1 𝜏1, . . . , x𝑛 :X𝑛 𝜏𝑛 ,

where types are either primitive types or of shape Cm , with m modifier. We
assume that fields can be declared either imm or mut, whereas the modifiers
caps and read are only used for local variables. Besides those, which are written
by the programmer in source code, modifiers include a numerable set of seals
𝜎 which are only internally used by the type system, as will be explained later.

Operations on coeffect contexts are lifted to type-and-coeffect contexts as
in the previous case. However, there are some novelties:

• The partial order must take into account subtyping as well, defined by

– 𝜏 ≤ 𝜏 ′ if either 𝜏 = 𝜏 ′ primitive type, or 𝜏 = Cm , 𝜏 ′ = Cm′ , with
– m ≤ m′ induced by 𝜎 ≤ 𝜎 ′, 𝜎 ≤ caps, caps ≤ mut, caps ≤ imm,

mut ≤ read, imm ≤ read, see Figure 6.5.

• In the sum of two contexts, denoted 𝛤 ⊕ 𝛥, variables of a caps or 𝜎 type
cannot occur in both; that is, they are handled linearly.

Combination of modifiers, denoted m [m′], is defined by

4 This terminology is chosen to emphasize the analogy with promotion in the sense of linear
logic and graded type systems.

114 beyond structural coeffects

m [m′] = m if m ≤ imm mut[m] = m

read[m] =

imm if m = imm or m = caps

undefined if m = 𝜎

read if mut ≤ m

Combination of modifiers is used in (t-field-access) to propagate the
modifier of the receiver, and in (t-prom) to promote the type and seal mutable
variables connected to the result, see below.

The typing rules are given in Figure 6.6. We only comment on the novelties
with respect to Section 6.3.

Rule (t-sub) uses the subtyping relation as usual. In rule (t-field-access),
the notation 𝜏 [m] denotes Cm′ [m] if 𝜏 = Cm′ , and 𝜏 otherwise, that is, if 𝜏
is a primitive type. For instance, mutable fields referred to through an imm
reference are imm as well. In other words, modifiers are deep.
In rule (t-field-assign), only a mut expression can occur as the left-hand

side of a field assignment. In rule (t-new), a constructor invocation is mut,
hence mut is the default modifier of expressions of reference types. Note that
the read modifier can only be introduced by variable/method declaration. The
caps and imm modifiers, on the other hand, in addition to variable/method
declaration, can be introduced by the promotion rule (t-prom).
As in the previous type system, the auxiliary function mtype returns an

enriched method type where the parameter types are decorated with coeffects,
including the implicit parameter this. The condition that method bodies
should be well-typed with respect to method types is exactly as in the previous
type system, with only the difference that types have modifiers.

Rule (t-imm) generalizes rule (t-prim) of the previous type system, allowing
the links with the result to be removed, to immutable types. For instance,
assuming the following variant of Example 6.2.2 (recall that the default modifier
mut can be omitted):
class B {int f;}
class C {imm B f1; B f2;}

the following derivable judgment

z1 :∅ Bimm,z2 :{ℓ } B ⊢ new C(z1,z2).f1 : Bimm, with ℓ ≠ r

shows that there is no longer a link between the result and z1.
The new rule (t-prom) plays a key role, since, as already mentioned, it

detects that an expression is a capsule thanks to its coeffects, and promotes
its type accordingly. The basic idea is that a mut (resp. read) expression can
be promoted to caps (resp. imm) provided that there are no free variables
connected to the result with modifier read ormut. However, to guarantee that
subject holds, the same promotion should be possible for runtime expressions,
which may contain free variables which actually aremut references generated
during reduction. To this end, the rule allows mut variables connected to the
result5. Such variables become sealed as an effect of the promotion, leading

5 Whereas read variables are still not allowed, as expressed by the fact that read[𝜎] is un-
defined.

6.4 case study: type modifiers for uniqeness and immutability 115

𝜏 ::= Cm | P | . . . type
m ::= mut | read | imm | caps | 𝜎 modifier

(t-sub)
𝛤 ⊢ e : 𝜏 ′
𝛤 ⊢ e : 𝜏 𝜏 ′ ≤ 𝜏 (t-var) ∅ · 𝛤 ⊕ x :{r} 𝜏 ⊢ x : 𝜏

(t-const) ∅ ⊳ 𝛤 ⊢ k : Pk

(t-field-access)
𝛤 ⊢ e : Cm

𝛤 ⊢ e.f𝑖 : 𝜏𝑖 [m]
fields(C) = 𝜏1 f1; . . . 𝜏𝑛 f𝑛;
𝑖 ∈ 1..𝑛

(t-field-assign)
𝛤 ⊢ e : Cmut 𝛥 ⊢ e′ : 𝜏𝑖
𝛤 ⊕ 𝛥 ⊢ e.f𝑖= e′ : 𝜏𝑖

fields(C) = 𝜏1 f1; . . . 𝜏𝑛 f𝑛;
𝑖 ∈ 1..𝑛

(t-new)
𝛤𝑖 ⊢ e𝑖 : 𝜏𝑖 ∀𝑖 ∈ 1..𝑛

𝛤1 ⊕ . . . ⊕ 𝛤𝑛 ⊢ new C (e1, . . . , e𝑛) : Cmut fields(C) = 𝜏1 f1; . . . 𝜏𝑛 f𝑛;

(t-invk)
𝛤0 ⊢ e0 : Cm 𝛤𝑖 ⊢ e𝑖 : 𝜏𝑖 ∀𝑖 ∈ 1..𝑛

𝛤 ′
0 . . . 𝛤

′
𝑛 ⊢ e0.m(e1, . . . , e𝑛) : 𝜏

mtype(C,m) ≡fr mX0 , 𝜏
X1
1 . . . 𝜏

X𝑛
𝑛 → 𝜏

𝛤 ′
𝑖 = X𝑖 ∪ {ℓ𝑖 } · 𝛤𝑖
ℓ0, . . . , ℓ𝑛 fresh

(t-block)
𝛤 ⊢ e : 𝜏 𝛤 ′, x :X 𝜏 ⊢ e′ : 𝜏 ′

(X ∪ {ℓ}) · 𝛤 ⊕ 𝛤 ′ ⊢ {𝜏 x = e; e′} : 𝜏 ′ ℓ fresh

(t-imm)
𝛤 ⊢ e : 𝜏

{ℓ} · 𝛤 ⊢ e : 𝜏
ℓ fresh
𝜏 = P or 𝜏 = Cimm (t-prom)

𝛤 ⊢ e : Cm

𝛤 [𝜎] ⊢ e : Cm [caps]
mut ≤ m
𝜎 fresh

(t-ref)
x :Cm {r} ⊩ x : Cm m=mut or m=𝜎

(t-imm-ref)
x :{ℓ } Cimm ⊩ x : Cimm

ℓ fresh (t-mem-const) ∅ ⊩ k : Pk

(t-obj)
𝛤𝑖 ⊩ v𝑖 : 𝜏𝑖 [m] ∀𝑖 ∈ 1..𝑛

𝛤1 + · · · + 𝛤𝑛 ⊩ [v1, . . . , v𝑛]C : Cm fields(C) = 𝜏1 f1; . . . 𝜏𝑛 f𝑛;

(t-mem)
𝛤𝑖 ⊩ 𝜇 (x𝑖) : Cm𝑖

𝑖
∀𝑖 ∈ 1...𝑛

𝛤𝜇 + 𝛤 ⊢ 𝜇

𝛤𝜇 = x1 :{ℓ1 } C
m1
1 , . . . , x𝑛 :{ℓ𝑛 } C

m𝑛
𝑛

dom(𝛤𝜇) = dom(𝜇)
𝛤 = ({ℓ1} · 𝛤1) + . . . + ({ℓ𝑛} · 𝛤𝑛)
ℓ1, . . . , ℓ𝑛 fresh

(t-conf)
𝛥 ⊢ e : 𝜏 𝛤 ⊢ 𝜇

𝛥 + 𝛤 ⊢ e |𝜇 : 𝜏
dom(𝛥) ⊆ dom(𝛤)

figure 6.6 Adding modifiers and immutability

116 beyond structural coeffects

to the context 𝛤 [𝜎], obtained from 𝛤 by combining modifiers of variables
connected to the result with 𝜎 . Formally, if 𝛤 = x1 :X1 𝜏1, . . . , x𝑛 :X𝑛 𝜏𝑛 ,
𝛤 [𝜎] = x1 :X1 𝜏

′
1, . . . , x𝑛 :X𝑛 𝜏 ′𝑛 where 𝜏 ′𝑖 = 𝜏𝑖 [𝜎] if r ∈ X𝑖 , 𝜏 ′𝑖 = 𝜏𝑖 otherwise

The notation 𝜏 [𝜎] is the same used in rule (t-field-access).
This highlights once again the analogy with the promotion rule for the

(graded) bang modality of linear logic [15], where, in order to introduce a
modality on the right-hand side of a sequent, one has to modify the left-hand
side accordingly.6We detail in the following how sealed variables are internally
used by the type system to guarantee subject reduction.

Rule (t-mem) is also analogous to that in Figure 6.3. However, typechecking
objects is modeled by an ad-hoc judgment ⊩, where references can only be
mut, imm, or 𝜎 (read and caps are source-only notions), and subsumption is
not included. As a consequence, rule (t-obj) imposes that a reference reachable
from an imm reference or field should be tagged imm as well, and analogously
for seals.

Rule (t-conf) is as in Figure 6.3. Note that we use the sum of contexts + from
the previous type system, since the linear treatment of caps and 𝜎 variables is
only required in source code.

As in the previous type system, the rules in Figure 6.6 lead to an algorithm
which inductively computes the coeffects of an expression. The only relevant
novelty is rule (t-prom), assumed to be applied only when needed, that is,
when we typecheck the initialization expression of a local variable declared
caps, or the argument of a method call where the corresponding parameter is
declared caps. Rule (t-imm) is applied, as (t-prim) before, only once, whenever
an expression has either a primitive or an immutable type. Subsumption rule
(t-sub) only handles types, and can be replaced by a more verbose version of
the rules with subtyping conditions where needed. In the other cases, rules
are syntax-directed, that is, the coeffects of the expression in the consequence
are computed as a linear combination of those of the subexpressions, where
the basis is the rule for variables.
We illustrate now the use of seals to preserve types during reduction. For

instance, consider again Example 6.2.2:
class B {int f;}
class C {B f1; B f2;}

e0 = {B z = new B(2); x.f1=y;new C(z,z)}
𝜇0 = {x ↦→ [x1,x1]C,x1 ↦→ [0]B,y ↦→ [1]B}

Expression e0 is a capsule, since its free variables (external resources) x and
y will not be connected to the final result. Formally, set 𝛥 = x :{ℓ } C,y :{ℓ } B,
with ℓ ≠ r, we can derive the judgment 𝛥 ⊢ e0 : Cmut, and then apply the
promotion rule (t-prom), as shown below.

(t-conf)

(t-prom)
𝛥 ⊢ e0 : Cmut

𝛥 ⊢ e0 : Ccaps
𝛤 ⊢ 𝜇0

𝛥 + 𝛤 ⊢ e0 |𝜇0 : Ccaps
𝛤 = x :{ℓx } C,x1 :{ℓx } C,y :{ℓy } B

6 This is just an analogy, making it precise is an interesting direction for future work.

6.4 case study: type modifiers for uniqeness and immutability 117

where promotion does not affect the context𝛥 as there are nomutable variables
connected to r.
The first steps of the reduction of e0 | 𝜇0 are as follows:

e0 | 𝜇0→ e1 | 𝜇1 = {B z = w; x.f1=y;new C(z,z)} | 𝜇 ∪ {w ↦→ [2]B}
→ e2 | 𝜇1 = x.f1=y;new C(w,w) | 𝜇 ∪ {w ↦→ [2]B}

Whereas sharing preservation, in the sense of Theorem 6.3.3, clearly still holds,
to preserve the caps type of the initial expression the (t-prom) promotion rule
should be applicable to e1 and e2 as well. However, in the next steps w is a free
variable connected to the result; for instance for e1 we derive:

𝛥,w :{r} B ⊢ e1 : Cmut

Intuitively, e1 is still a capsule, since w is a fresh reference denoting a closed
object in memory. Formally, the promotion rule can still be applied, but variable
w becomes sealed:

(t-conf)

(t-prom)
𝛥,w :{r} B ⊢ e1 : Cmut

𝛥,w :{r} B𝜎 ⊢ e1 : Ccaps
𝛤,w :{ℓw} B𝜎 ⊢ 𝜇1

𝛥,w :{r} B𝜎 + 𝛤 ⊢ e1 |𝜇1 : Ccaps

Capsule guarantee is preserved since a sealed reference is handled linearly,
and the typing rules for memory (judgment ⊩) ensure that it can only be in
sharing with another one with the same seal. Moreover, the relation 𝜎 ≤ 𝜎 ′

ensures type preservation in case a group of sealed references collapses during
reduction in another one, as happens with a nested promotion.

Let us denote by erase(𝛤) the context obtained from 𝛤 by erasing modifiers
(hence, a context of the previous type-and-coeffect system). Subject reduction
includes sharing preservation, as in the previous type system; in this case
modifiers are preserved as well. More precisely, they can decrease in the type
of the expression, and increase in the type of references in the context. We
write 𝛤 ≤ 𝛥 when, for all x ∈ dom(𝛤), we have modif(𝛤, x) ≤ modif(𝛥, x).

theorem 6.4.2 (Subject Reduction): If 𝛤 ⊢ e |𝜇 : 𝜏 and e |𝜇 → e′ |𝜇′ then

• (𝛤 ′ + 𝛥′)↾𝛤 ′ = 𝛤 ′, for 𝛤 ′ = erase(𝛤) and 𝛥′ = erase(𝛥);
• 𝛤 ≤ 𝛥.

To prove this theorem we need some auxiliary definitions and lemmas.

definition 6.4.3 : 𝛤 ◀ 𝛤 ′ if

1. 𝛤 ′ = 𝛤 or

2. 𝛤 ′ = 𝛤 [𝜎] or

3. 𝛤 ′ = {ℓ} · 𝛤 with ℓ fresh, or

4. 𝛤 ′ = {ℓ} · 𝛤 [𝜎] with ℓ fresh.

118 beyond structural coeffects

lemma 6.4.4 : If D : 𝛤 ⊢ e : 𝜏 , then there is a subderivation D′ : 𝛤 ′ ⊢ e : 𝜏 ′
of D ending with a syntax-directed rule and 𝛤 ′ ◀ 𝛤 .

lemma 6.4.5 : If, for all x ∈ dom(𝛤) ∩ dom(𝛥), modif(𝛤, x) ≤ modif(𝛥, x),
then, for all x ∈ dom(𝛤) ∩ dom(𝛥), modif(𝛤 [𝜎], x) ≤ modif(𝛥 [𝜎], x).

Proof: We consider only contexts for expressions, so modifiers can be only
imm, mut and 𝜎 . We also consider x :X 𝜏m ∈ 𝛤 and x :X ′ 𝜏m

′ ∈ 𝛥. We have
three cases:

• m = m′

Immediate
• m = 𝜎 and m′ = imm
We know 𝜎 [𝜎 ′] = 𝜎 and imm[𝜎 ′] = imm, so we have the thesis

• m = 𝜎 and m′ = mut
We know 𝜎 [𝜎 ′] = 𝜎 and mut[𝜎 ′] = 𝜎 ′, so we have the thesis

□

lemma 6.4.6 : Let 𝛤, 𝛥 ⊢ 𝜇 where, 𝛥 = x1 :X C𝜎1 , . . . , x𝑛 :X C𝜎𝑛 and, for all
x ∈ dom(𝛤), coeff(𝛤, x) ∩ X = ∅. Let m ∉ {read, caps} be a modifier and
𝛩 = x1 :X1 C

m
1 , . . . , x𝑛 :X𝑛 Cm

𝑛 be such that

• m = imm implies X𝑖 = {ℓ𝑖}, with ℓ𝑖 fresh for all 𝑖 ∈ 1..𝑛.
• m ≠ imm implies X𝑖 = X for all 𝑖 ∈ 1..𝑛.

Then, 𝛤,𝛩 ⊢ 𝜇 holds.

lemma 6.4.7 : Let 𝛤 + 𝛤𝜇 ⊢ 𝜇, where

• 𝛤𝜇 =
∑

z∈dom(𝜇) z :{ℓz } C
mz
𝑧 with ℓz fresh for all z ∈ dom(𝜇);

• 𝛤 =
∑

z∈dom(𝜇) {ℓz} ⊳ 𝛤z where 𝛤z ⊩ 𝜇 (z) : Cmz
z for all z ∈ dom(𝜇);

• x, y ∈ dom(𝜇) and 𝜇 (x) = [v1, . . . , v𝑚]Cx , fields(Cx) = 𝜏1 f1; . . . 𝜏𝑚 f𝑚;,
𝛤x =

∑𝑚
𝑗=1 𝛤

′
𝑗 , 𝛤

′
𝑗 ⊩ v𝑗 : 𝜏 𝑗 [mx], for all 𝑗 ∈ 1...𝑚, and 𝜏𝑖 [mx] = Cmy

y and
𝛤 ′
𝑖 = y′ :Y Cmy

y for some 𝑖 ∈ 1...𝑚.

Let𝛥 be such that𝛥 = {ℓx} ⊳ 𝛥x+
∑

z∈dom(𝜇)\{x}{ℓz} ⊳ 𝛤z with𝛥x = y :Y Cmy
y +∑𝑖−1

𝑗=1 𝛤
′
𝑗 +

∑𝑚
𝑗=𝑖+1 𝛤

′
𝑗 . Then,𝛥+𝛤𝜇 ⊢ 𝜇x .𝑖=y holds andmodif(𝛤+𝛤𝜇, z) = modif(𝛥+

𝛤𝜇, z) for all z ∈ dom(𝜇)

proof of theorem 6.4.2
Proof: Since the proof for condition (𝛤 ′ + 𝛥′)↾𝛤 ′ = 𝛤 ′, for 𝛤 ′ = erase(𝛤)
and 𝛥′ = erase(𝛥) is analogous to the proof for Theorem 6.3.3 in this proof
we focus on the condition for all x ∈ dom(𝛤), modif(𝛤, x) ≤ modif(𝛥, x)
. If 𝛤 ⊢ e |𝜇 : 𝜏 , we have 𝛤 = 𝛤1 + 𝛤2, 𝛤1 ⊢ e : 𝜏 and 𝛤2 ⊢ 𝜇. We also know
that 𝛤2 = 𝛤𝜇 + 𝛩 , where 𝛤𝜇 = x1 :{ℓ1} 𝜏1, . . . , x𝑛 :{ℓ𝑛 } 𝜏𝑛 , 𝛩 =

∑𝑛
𝑖=1 ℓ𝑖 · 𝛩𝑖 ,

𝛩𝑖 ⊢ 𝜇 (x𝑖) : 𝜏𝑢 and ℓ1, . . . , ℓ𝑛 are fresh links. The proof is by induction on the
reduction relation.

6.4 case study: type modifiers for uniqeness and immutability 119

(field-assign) By Lemma 6.4.4 and rule (t-assign) we have 𝛤 ′′
1 ⊢ x : 𝜏𝑖

and 𝛤 ′′
2 ⊢ v : 𝜏𝑖 such that 𝛤 ′′

1 + 𝛤 ′′
2 ◀ 𝛤1 with fields(C) = 𝜏1 f1; . . . 𝜏𝑛 f𝑛;

and 𝑖 ∈ 1..𝑛. We have two interesting cases considering v = y:

• 𝜏𝑖 = Dimm

Since 𝛤 ′′
2 ⊢ y : Dimm we know that modif(𝛤 ′′

2 , y) ≠ mut and so
modif(𝛤, y) ≠ mut. By rule (t-var) we have y :Y Dimm ⊢ y : Dimm.
By applying the same non syntax directed rules applied to 𝛤 ′′

1 +𝛤 ′′
2 ⊢

x.f𝑖= y : Dimm we have y :Y Dimm ⊢ y : 𝜏 . We have two cases:
– modif(𝛤, y) = imm

By Lemma 6.4.7 and applying rule (t-conf) we have the thesis
– modif(𝛤, y) = 𝜎

By Lemma 6.4.6 applied to variables with coeffect coeff(𝛤2, y)
and with m = imm, by Lemma 6.4.7 and by applying rule
(t-conf) we have the thesis

• 𝜏𝑖 = Dmut

Since 𝛤 ′′
1 ⊢ x : Cmut and 𝛤 ′′

2 ⊢ y : Dmut, we havemodif(𝛤 ′′
1 , x) ≠ mut

andmodif(𝛤 ′′
2 , y)≠imm, somodif(𝛤, x)≠imm andmodif(𝛤, y)≠imm.

We have four cases:
– modif(𝛤, x) = mut and modif(𝛤, y) = mut

We can apply the same non syntax directed rules applied to
𝛤 ′′
1 + 𝛤 ′′

2 ⊢ x.f𝑖= y : Dimm to 𝛤 ′′
2 ⊢ v : 𝜏𝑖 . By Lemma 6.4.7 and

applying rule (t-conf) we have the thesis
– modif(𝛤, x) = mut and modif(𝛤, y) = 𝜎

We know by Lemma 6.4.4 and rule (t-var) that x :X ′′ 𝜏 ′′ ⊢
x : 𝜏 ′′. We can apply rule (t-var) and the same non syntax-
directed rules applied to x on y to obtain y :X ′ Dmodif(𝛤 ′′

1 +𝛤 ′′
2 ,x) ⊢

y : Dmut. If we apply the same non syntax-directed rules ap-
plied to 𝛤 ′′

1 + 𝛤 ′′
2 ⊢ x.f𝑖= y : 𝜏𝑖 we have y :X Dmut ⊢ y : 𝜏 . By

Lemma 6.4.6 applied to variables with coeffect coeff(𝛤2, y) and
with m = mut, by Lemma 6.4.7 and applying rule (t-conf) we
have the thesis.

– modif(𝛤, x) = 𝜎 and modif(𝛤, y) = 𝜎 ′

Reasoning similar to that above. We also apply Lemma 6.4.6
with m = 𝜎 .

– modif(𝛤, x) = 𝜎 and modif(𝛤, y) = mut
We can apply the same non syntax-directed rules applied to
𝛤 ′′
1 + 𝛤 ′′

2 ⊢ x.f𝑖= y : 𝜏𝑖 to 𝛤 ′′
2 ⊢ y : 𝜏𝑖 to have y :Y Dmut ⊢ y : 𝜏 .

By Lemma 6.4.6 applied to variables with coeffect coeff(𝛤2, x)
and with m = mut, by Lemma 6.4.7 and applying rule (t-conf)
we have the thesis.

(block) We have {𝜏 ′ x = v; e}. By Lemma 6.4.4 and rule (t-block) we
have a contexts (X ∪ {ℓ}) · 𝛤 ′′

1 +𝛤 ′′
2 ◀ 𝛤1 such that (X ∪ {ℓ}) · 𝛤 ′′

1 +𝛤 ′′
2 ⊢

{𝜏 ′ x = v; e} : 𝜏 , 𝛤 ′′
1 ⊢ v : 𝜏 ′ and 𝛤 ′′

2 , x :X 𝜏 ′ ⊢ e : 𝜏 . By Lemma 6.3.13 we

120 beyond structural coeffects

have that 𝛥′′ ⊢ e′ [v/x] : 𝜏 with 𝛥′′ ⊆̂ X · 𝛤 ′
1 + 𝛤 ′′

2 ⊆̂ (X ∪ {ℓ}) · 𝛤 ′′
1 + 𝛤 ′′

2 .
By applying the same non syntax directed rules applied to (X ∪ {ℓ}) ·
𝛤 ′′
1 + 𝛤 ′′

2 ⊢ {𝜏 ′ x = v; e} : 𝜏 since 𝛥′′ ⊆̂ (X ∪ {ℓ}) · 𝛤 ′′
1 + 𝛤 ′′

2 we have the
thesis.

(field-access) We know that x.f |𝜇 → v |𝜇, hence e = x.f , e′ = v. By
Lemma 6.4.4 and rule (t-field-access) we have 𝛤 ′′ ⊢ x.f𝑖 : 𝜏𝑖 [m] and
𝛤 ′′ ⊢ x : Cm such that 𝛤 ′′ ◀ 𝛤1 and 𝜏 ′ = 𝜏𝑖 [m] ≤ 𝜏 with fields(C) =

𝜏1 f1; . . . 𝜏𝑛 f𝑛;𝑖 ∈ 1..𝑛. We have two interesting cases:

• 𝜏𝑖 = Dimm

By rule (t-var) we can derive y :X ′ Dimm ⊢ y : Dimm. Since 𝜏 =

𝜏𝑖 [m] = Dimm we know that to 𝛤 ′′ ⊢ x.f𝑖 : Dimm is not applied
rule (t-caps), so, if we apply to y :X Dimm ⊢ y : Dimm the same
non syntax-directed rules applied to 𝛤 ′′ ⊢ x.f𝑖 : Dimm we obtain
y :X Dimm ⊢ y : 𝜏 , where X = coeff(𝛤1, x). By rule (t-mem) and (t-
obj)we have𝛥1+· · ·+𝛥𝑛 ⊩ [v1, . . . , v𝑛]C : Cm′ and𝛥𝑖 ⊩ v𝑖 : 𝜏𝑖 [m′]
where 𝜇 (x) = [v1, . . . , v𝑛]C , fields(C) = 𝜏1 f1; . . . 𝜏𝑛 f𝑛; and exists
𝑖 such that v𝑖 = y. Since 𝜏𝑖 = Dimm we know 𝜏𝑖 [m] = Dimm and
𝛤𝑖 ⊩ y : Dimm.By rule (t-imm-ref) we obtain 𝛥𝑖 = y :{ℓ } Dimm with
ℓ fresh. Since memory does not change applying rule (t-conf) we
obtain the thesis.

• 𝜏𝑖 = Dmut

We know by Lemma 6.4.4 and rule (t-var) that x :X ′′ 𝜏 ′′ ⊢ x : 𝜏 ′′
and 𝛤 ′′ = x :X ′ Cm′ . We can apply rule (t-var) and the same non
syntax-directed rules applied to x on y to obtain y :X ′ 𝜏𝑖 [m′] ⊢
y : 𝜏𝑖 [m]. If we apply the same non syntax-directed rules applied
to 𝛤 ′′ ⊢ x.f𝑖 : 𝜏𝑖 [m] we have y :X 𝜏𝑖 [m′′] ⊢ y : 𝜏 . We know
modif(𝛤, x) = modif(y :X 𝜏𝑖 [m′′], y) = m′′ and coeff(𝛤1, x) = X .
By rule (t-mem) and (t-obj) we have 𝛥1 + · · · +𝛥𝑛 ⊩ [v1, . . . , v𝑛]C :
Cm′′ and 𝛥𝑖 ⊩ v𝑖 : 𝜏𝑖 [m′′] where 𝜇 (x) = [v1, . . . , v𝑛]C , fields(C) =
𝜏1 f1; . . . 𝜏𝑛 f𝑛; and exists 𝑖 such that v𝑖 = y. By rule (t-imm-ref)
we obtain 𝛥𝑖 = y :{ℓ } 𝜏𝑖 [m′′] with ℓ fresh. Since memory does not
change applying rule (t-conf) we obtain the thesis.

(ctx) Wehave e = E[e1] and e′ = E[e′1] and e1 |𝜇 → e′1 |𝜇′ and 𝛤1 ⊢ E[e1] : 𝜏 .
We prove the thesis by induction on the evaluation context E. We

show only the relevant cases:

• E = [] We know that 𝛤 ⊢ E[e1] |𝜇 : 𝜏 and that E[e1] = e1,
so 𝛤 ⊢ e1 |𝜇 : 𝜏 . Applying the primary induction hypothesis to
e1 |𝜇 → e′1 |𝜇′ and 𝛤 ⊢ e1 |𝜇 : 𝜏 and by knowing that E[e′1] = e′1 we
obtain the thesis.

• E = E′.f = e′ By Lemma 6.4.4 we know that exists a context 𝛤 ′
1

such that 𝛤 ′
1 ◀ 𝛤1 and a derivationD′ : 𝛤 ′

1 ⊢ E[e1] : 𝜏 ′ ending with
a syntax directed rule.We know that the last applied rule inD′ must

6.4 case study: type modifiers for uniqeness and immutability 121

be (t-assign), so we know 𝛤 ′
1 = 𝛤 ′′

1 + 𝛤 ′′
2 such that 𝛤 ′′

1 ⊢ E′ [e1] :
Cmut and 𝛤 ′′

2 ⊢ e′ : 𝜏𝑖 with fields(C) = 𝜏1 f1; . . . 𝜏𝑛 f𝑛; and 𝑖 ∈ 1..𝑛.
We can apply rule (t-conf) to obtain 𝛤 ′′

1 + 𝛤2 ⊢ E′ [e1] |𝜇 : Cmut.
By (ctx) we have E′ [e1] |𝜇 → E′ [e′1] |𝜇′. By secondary induction
hypothesis on this and on 𝛤 ′′

1 + 𝛤2 ⊢ E′ [e1] |𝜇 : Cmut we have that
𝛩 ′ ⊢ E′ [e′1] |𝜇′ : Cmut such that
– (erase(𝛤 ′′

1 +𝛤2) +erase(𝛩 ′))↾erase(𝛤 ′′
1 +𝛤2) = erase(𝛤 ′′

1 +𝛤2),
– for all x ∈ dom(𝛤 ′′

1 + 𝛤2), modif(𝛤 ′′
1 + 𝛤2, x) ≤ modif(𝛩 ′, x)

By rule (t-conf) we have𝛩 ′ = 𝛥′
1 + 𝛤 ′

2 such that 𝛥′
1 ⊢ E′ [e′1] : 𝜏 ′

and 𝛤 ′
2 ⊢ 𝜇′. By rule (t-assign) we have 𝛥′

1 + 𝛥2 ⊢ E[𝑒′1] : 𝜏 ′. We
can prove that
– for all x ∈ dom(𝛤 ′

1) ∩ dom(𝛥′
1 + 𝛥2),

modif(𝛤 ′
1 , x) ≤ modif(𝛥′

1 + 𝛥2, x).
Applying the same non-syntax-directed rules applied to 𝛤 ′

1 ⊢ E[e1] : 𝜏 ′
and rule (t-conf), by Lemma 6.4.5 we obtain the thesis.

• E = {𝜏x x = E′; e′} By Lemma 6.4.4 we know that exists a context
𝛤 ′
1 such that 𝛤 ′

1 ◀ 𝛤1 and a derivation D′ : 𝛤 ′
1 ⊢ E[e1] : 𝜏 ′ ending

with a syntax directed rule. We know that the last applied rule in
D′ must be (t-block), so we know 𝛤 ′

1 = ((X ∪ {ℓ}) · 𝛤 ′′
1) ⊕ 𝛤 ′′

2
such that 𝛤 ′′

1 ⊢ E′ [e1] : 𝜏x and 𝛤 ′′
2 , x :X 𝜏x ⊢ e′ : 𝜏𝑖 . We can apply

rule (t-conf) to obtain 𝛤 ′′
1 + 𝛤2 ⊢ E′ [e1] |𝜇 : 𝜏x . By (ctx) we have

E′ [e1] |𝜇 → E′ [e′1] |𝜇′. By secondary induction hypothesis on this
and on 𝛤 ′′

1 + 𝛤2 ⊢ E′ [e1] |𝜇 : 𝜏𝑧 we have 𝛩 ′ ⊢ E′ [e′1] |𝜇′ : 𝜏𝑧 such
that
– (erase(𝛤 ′′

1 +𝛤2) +erase(𝛩 ′))↾erase(𝛤 ′′
1 +𝛤2) = erase(𝛤 ′′

1 +𝛤2),
– for all x ∈ dom(𝛤 ′′

1 + 𝛤2), modif(𝛤 ′′
1 + 𝛤2, x) ≤ modif(𝛩 ′, x)

By rule (t-conf)we have𝛩 ′ = 𝛥′
1+𝛤 ′

2 such that𝛥
′
1 ⊢ E′ [e′1] : 𝜏 ′ and

𝛤 ′
2 ⊢ 𝜇′. By rule (t-block)we have ((X∪{ℓ}) ·𝛥′

1) ⊕𝛤 ′′
2 ⊢ E[𝑒′1] : 𝜏 ′.

We can prove that
– for all x ∈ (dom(𝛤 ′

1) ∩ dom(((X ∪ {ℓ}) · 𝛥′
1) ⊕ 𝛤 ′′

2)),
modif(𝛤 ′

1 , x) ≤ modif(((X ∪ {ℓ}) · 𝛥′
1) ⊕ 𝛤 ′′

2 , x)
Applying the same non-syntax-directed rules applied to 𝛤 ′

1 ⊢ E[e1] :
𝜏 ′ and rule (t-conf), by Lemma 6.4.5 we obtain the thesis.

□

We now focus on properties of the memory ensured by this extended type
system. First of all, we prove two lemmas characterising how the typing of
memory propagates type modifiers. Recall that ⊲𝜇 denotes the reachability
relation in memory 𝜇 (Definition 6.2.6).

lemma 6.4.8 : If 𝛤 ⊢ 𝜇 and x ⊲𝜇 y, then

• modif(𝛤, x) = mut implies modif(𝛤, y) = mut or modif(𝛤, y) = imm,
• modif(𝛤, x) = 𝜎 implies modif(𝛤, y) = 𝜎 or modif(𝛤, y) = imm,

122 beyond structural coeffects

• modif(𝛤, x) = imm implies modif(𝛤, y) = imm.

Proof: By induction on the definition of ⊲𝜇 .

case y = x The thesis trivially holds.
case 𝜇 (x) = [v1 , . . . , v𝑛]C , z = v𝑖 for some 𝑖 ∈ 1 . .𝑛 and z ⊲𝜇 y
. Since 𝛤 ⊢ 𝜇, inverting rule (t-mem), we have 𝛥 ⊩ [v1, . . . , v𝑛]C : Cm for
some 𝛥 with 𝛤 = 𝛤 ′+{ℓ} ·𝛥 and m = modif(𝛤, x). Inverting rule (t-obj)
and either (t-ref) or (t-imm-ref), we have that z :X 𝜏𝑖 [m] ⊩ z : 𝜏𝑖 [m],
with𝛥 = 𝛥′, z :𝜏𝑖 [m] X and fields(C) = 𝜏1 f1; . . . 𝜏𝑛 f𝑛;. Since z ∈ dom(𝜇),
𝜏𝑖 is of shape C′m′ . We split cases on m′.

• If m′ = imm, then 𝜏𝑖 [m] = imm, hence modif(𝛤, z) = imm and so,
by induction hypothesis, we get modif(𝛤, y) = imm as needed.

• If m′ = mut, then 𝜏𝑖 [m] = m, hence modif(𝛤, z) = m and so the
thesis follows by induction hypothesis.

□

lemma 6.4.9 : If 𝛤 ⊢ 𝜇, then, for all x, y∈dom(𝜇), coeff(𝛤, x)=coeff(𝛤, y)
implies modif(𝛤, x) = modif(𝛤, y).

In this refined setting, the definition of the sharing relation needs to take
into account modifiers. Indeed, if intuitively two references are in sharing
when a mutation of either of the two affects the other, then no sharing should
be propagated through immutable references. To do so, we need to assume a
well-typed memory in order to know modifiers of references.7

definition 6.4.10 (Sharing in memory with modifiers): The sharing rela-
tion in memory 𝛤 ⊢ 𝜇, denoted by ⊲⊳𝛤,𝜇 , is the smallest equivalence relation on
dom(𝜇) such that:

x ⊲⊳𝛤,𝜇 y if 𝜇 (x) = [v1, . . . , v𝑛]C , modif(𝛤, x),modif(𝛤, y) ≤ mut
and y = v𝑖 for some 𝑖 ∈ 1..𝑛

Again, for a well-typed memory, coeffects characterize the sharing relation
exactly.

proposition 6.4.11 : If 𝛤 ⊢ 𝜇, then x ⊲⊳𝛤,𝜇 y iff coeff(𝛤, x) = coeff(𝛤, y),
for all x, y ∈ dom(𝜇).

In the extended type system, we can detect capsule expressions from the
modifier, without looking at coeffects of free variables, proving that the result
of a caps expression is not in sharing with the initial mutable variables.

theorem 6.4.12 (Capsule expression): If 𝛤 ⊢ e |𝜇 : Ccaps, and e | 𝜇 →★

y | 𝜇′, then there exists 𝛤 ′ such that 𝛤 ′ ⊢ 𝜇′, 𝛤 ≤ 𝛤 ′ and, for all x ∈ dom(𝜇),
x ⊲⊳𝛤 ′,𝜇′ y implies modif(𝛤, x) ≤ modif(𝛤 ′, x) ≠ mut.

7 Actually, we do not need the full typing information, having just modifiers would be enough.

6.4 case study: type modifiers for uniqeness and immutability 123

Proof: By Theorem 6.4.2, we get 𝛥 ⊢ y |𝜇′ : Ccaps with 𝛤 ≤ 𝛥. By in-
verting rule (t-conf), we get 𝛥1 ⊢ y : Ccaps and 𝛥2 ⊢ 𝜇′, with 𝛥 = 𝛥1 +
𝛥2 and 𝛤 ≤ 𝛥2, as modif(𝛥2, z) = modif(𝛥, z) for all ∈ dom(𝛥). Since
y ∈ dom(𝜇′), it cannot have modifier caps, hence 𝛥1 ⊢ y : Ccaps holds
by rule (t-prom) or (t-sub). This implies 𝛥1 = ∅ · 𝛥′, y :{r} C𝜎 and so
modif(𝛥, y) = modif(𝛥2, y) = modif(𝛥1, y) = 𝜎 . Set 𝛤 ′ = 𝛥2. By Propos-
ition 6.4.11 and Lemma 6.4.9, x ⊲⊳𝛤 ′,𝜇′ y impliesmodif(𝛤 ′, 𝑥) = 𝜎 , thus we get
modif(𝛤, 𝑥) ≤ modif(𝛥, x) = modif(𝛤 ′, x) ≠ mut, hence the thesis. □

It is important to notice that the notion of capsule expression in The-
orem 6.4.12 is different from the previous one (Definition 6.2.4), as we now
have imm references. In particular, the previous notion prevented any access
to the reachable object graph of the result from free variables, since, without
modifiers, any access to a portion of memory can modify it. Here, instead, this
is no longer true, hence the notion of capsule allows mutable references to
access the reachable object graph of the result of a capsule expression, but only
through imm references. Indeed, if two references access the same non-imm
reference, they are necessarily in sharing, as shown below.

proposition 6.4.13 : Let 𝛤 ⊢ 𝜇. If x ⊲𝜇 z and y ⊲𝜇 z andmodif(𝛤, z) ≠ imm,
then x ⊲⊳𝛤,𝜇 y.

Proof: We first show that x ⊲⊳𝜇 z. The proof is by induction on the definition
of ⊲𝜇 .

case x = z The thesis trivially holds by reflexivity of ⊲⊳𝛤,𝜇 .
case 𝜇 (x) = [v1 , . . . , v𝑛]C , x ′ = v𝑖 for some 𝑖 ∈ 1 . .𝑛 and x ′ ⊲𝜇 z
We know that modif(𝛤, x),
modif(𝛤, x′) ≤ mut because modif(𝛤, x′) = imm (or modif(𝛤, x) =

imm) would imply modif(𝛤, z) = imm, by Lemma 6.4.8, which is a
contradiction. Therefore, by Definition 6.4.10, we have x ⊲⊳𝛤,𝜇 x′ and
by induction hypothesis, we get x′ ⊲⊳𝛤,𝜇 z; then we get x ⊲⊳𝛤,𝜇 z by
transitivity of ⊲⊳𝛤,𝜇 .

By the same argument, we also get y ⊲⊳𝛤,𝜇 z. Then, by transitivity of ⊲⊳𝛤,𝜇 ,
we get the thesis. □

corollary 6.4.14 : If 𝛤 ⊢ e |𝜇 : Ccaps, and e | 𝜇 →★ y | 𝜇′, then there exists
𝛤 ′ such that 𝛤 ′ ⊢ 𝜇′, 𝛤 ≤ 𝛤 ′ and, for all x ∈ dom(𝜇), modif(𝛤 ′, x) = mut and
x ⊲𝜇′ z and y ⊲𝜇′ z imply modif(𝛤 ′, z) = imm.

Proof: ByTheorem 6.4.12, we get 𝛤 ′ ⊢ 𝜇′ and x ⊲⊳𝛤 ′,𝜇′ y implymodif(𝛤 ′, x) ≠
mut. Supposemodif(𝛤 ′, z) ≠ imm, then, by Proposition 6.4.13, we get x ⊲⊳𝛤 ′,𝜇′

y, hence modif(𝛤 ′, x) ≠ mut, which contradicts the hypothesis. Therefore,
modif(𝛤 ′, z) = imm. □

124 beyond structural coeffects

In the extended type system, we can also nicely characterize the property
guaranteed by the imm references. Notably, the reachable object graph of an
imm modifier cannot be modified during the execution. We first show that
fields of an imm reference cannot change in a single computation step.

lemma 6.4.15 : If 𝛤 ⊢ e |𝜇 : 𝜏 , and modif(𝛤, x) = imm, and e |𝜇 → e′ |𝜇′, then
𝜇 (x) = 𝜇′(x).

Proof: By induction on reduction rules. The key case is rule (field-assign).
We have e = y.f = v and 𝛤 ⊢ y.f = v |𝜇 : 𝜏 . Let modif(𝛤, y) = m. Either rule
(t-field-assign) was the last rule applied, or one of the non syntax-directed
rules was applied after (t-field-assign). In the former case m = mut or
m = caps if rule (t-sub) was applied before (t-field-assign). In the latter
case m could only be equal to the previous modifier or m = 𝜎 if rule (t-prom)
was applied and the previous modifier was mut. Therefore, y ≠ x and so we
have the thesis. For all other computational rules the thesis is immediate as
they do not change the memory, and for (ctx) the thesis immediately follows
by induction hypothesis. □

Thanks to Lemma 6.4.8, we can show that the reachable object graph of an
imm reference contains only imm references. Hence, by the above lemma we
can characterise imm references as follows:

theorem 6.4.16 (Immutable reference): If 𝛤 ⊢ e |𝜇 : 𝜏 , modif(𝛤, x) = imm,
and e | 𝜇 →★ e′ | 𝜇′, then x ⊲𝜇 y implies 𝜇 (y) = 𝜇′(y).

Proof: By induction on the definition of→★

case e | 𝜇 = e ′ | 𝜇 ′ The thesis trivially holds.
case e | 𝜇 |e1 | 𝜇1 →→★ |e ′ | 𝜇 ′ Since modif(𝛤, x) = imm, for all y
such that x⊲𝜇y, by Lemma 6.4.8modif(𝛤, y) = imm, hence, by Lemma 6.4.15,
𝜇1(y) = 𝜇 (y). Therefore, it is easy to check that x ⊲𝜇 y implies x ⊲𝜇1 y.
By Theorem 6.4.2, 𝛥 ⊢ e1 |𝜇1 : 𝜏 and modif(𝛤, x) ≤ modif(𝛥, x), hence
modif(𝛥, x) = imm. Then, by induction hypothesis, 𝜇′(y) = 𝜇1(y),
hence the thesis. □

6.5 Expressive power

We discuss the expressive power of the type-and-coeffect system in Section 6.4,
comparing it with the two most closely related proposals by Gordon et al. [35]
and Pony [19, 20]. The takeaway is that our promotion mechanism is much
more powerful than their recovery, since sharing is taken into account; on the
other hand, the expressive power allowed by some of their annotations on
fields is beyond the scope of this thesis.
We assume a syntax enriched by the usual programming constructs.

6.5 expressive power 125

Before the work by Gordon et al. [35], the capsule property was only ensured
in simple situations, such as using a primitive deep clone operator, or compos-
ing subexpressions with the same property. The type system by Gordon et al.
[35] has been an important step, being the first to introduce recovery. That is,
this type system contains two typing rules which allow recovering isolated8
or immutable references from arbitrary code checked in contexts containing
only isolated or immutable variables. Such rules are rephrased below in our
style for better comparison.

(t-recov-iso)
𝛤 ⊢ e : Cmut

𝛤 ⊢ e : Ccaps IsoOrImm(𝛤)

(t-recov-imm)
𝛤 ⊢ e : Cread

𝛤 ⊢ e : Cimm
IsoOrImm(𝛤)

where IsoOrImm(𝛤) means that, for all x : Cm in 𝛤 , m ≤ imm.
As the reader can note, this is exactly in the spirit of coeffects, since typecheck-

ing also takes into account the way the surrounding context is used. By these
rules Gordon et al. [35] typechecks, e.g., the following examples, assuming the
language has threads with a parallel operator:

isolated IntList l1 = ...
isolated IntList l2 = ...
l1.map(new Incrementor()); || l2.map(new Incrementor());

The two threads do not interfere, since they operate and can mutate disjoint
object graphs.

isolated IntBox increment(isolated IntBox b){
b.value++;//b converted to mut by subtyping
return b//convert b *back* to isolated by recovery

}

An isolated object can be mutated9, and then isolation can be recovered, since
the context only contains isolated or immutable references.

In Pony [19, 20], the ideas of Gordon et al. [35] are extended to a richer set
of modifiers. In their terminology val is immutable, ref is mutable, box is
read-only. An ephemeral isolated reference iso^ is similar to a caps reference
in our calculus, whereas non ephemeral iso references are more similar to the
isolated fields discussed below. Finally, tag only allows object identity checks
and asynchronous method invocation, and trn (transition) is a subtype of
box that can be converted to val, providing a way to create values without
using isolated references. The last two modifiers have no equivalent in what
proposed by Gordon et al. [35] or our work.
The type-and-coeffect-system in Section 6.4 shares with the work by Gor-

don et al. [35] and Pony the modifiers mut, imm, read, and caps with their
subtyping relation, a similar operation to combine modifiers, and the key role
of recovery. However, rule (t-prom) is much more powerful than the recovery
rules reported above, which definitely forbid read and mut variables in the

8 Their terminology for capsule.
9 We say that the capsule is opened, see in the following.

126 beyond structural coeffects

context. Rule (t-prom), instead, allows such variables when they are not con-
nected to the final result, as smoothly derived from coeffects which compute
sharing. For instance, with the classes of Example 6.2.2, the following two
examples would be ill-typed in and Pony:

caps C es1 = {B z = new B(2); x.f1=y; new C(z,z)}
caps C es2 = {B z = new B(y.f=y.f+1); new C(z,z) }

Below is the corresponding Pony code.

class B
var f: U64
new create(ff:U64) => f=ff

class C
var f1: B
var f2: B
new create(ff1: B ref, ff2: B ref) => f1=ff1; f2=ff2

var x: B ref = ...
var y: B ref = ...
var es1: C iso =

recover iso var z = B(2); x.f1=y; C(z,z) end//ERROR
var es2: C iso =

recover iso var z = B(y.f=y.f+1); C(z,z) end//ERROR

A comparison on a more involved example, notably our running example, is
provided later on.
Another relevant difference with Gordon et al. [35] and Pony is that they

support isolated fields, using an ad-hoc semantics, called destructive read, see
also what done by Boyland [14]. Gordon et al. [35] allow to an isolated field
to be read only by a command x = consume(y.f), assigning the value to x
and updating the field to null.
Pony supports the command (consume x), with the semantics that the

reference becomes empty. Since fields cannot be empty, they cannot be argu-
ments of consume. By relying on the fact that assignment returns the left-hand
side value, in Pony one writes x=y.f=(consume z), with z isolated. In this
way, the field value is assigned to x, and the field is updated to a new isolated
reference.
We prefer to avoid destructive reads since they can cause subtle bugs [33].

As a consequence, in our approach the caps modifier cannot be applied to
fields. Isolated fields with destructive reads could be encoded by adding a
primitive IsoBox<T> type with set and get methods, the former allowing
to store a caps reference in the IsoBox, and the latter retrieving the stored
reference and marking the content as removed.
Let us add to class A of Example 6.4.1 the method nonMix that follows:

A nonMix [{ℓ }] (A { R } a) {this.f.f=a.f.f; a} // ℓ ≠ R

Consider the following code:

A a1= new A(new B(0));
caps A mycaps = {A a2 = new A(new B(1));

a1.mix(a2).clone() // (1)

6.5 expressive power 127

// a1.mix(a2).clone().mix(a2) // (2)
// a1.nonMix(a2) // (3)

}

The corresponding Pony code is as follows:

class B
var f:U64
new create(ff:U64) => f=ff
fun box clone():B iso^ => recover B(f) end

class A
var f:B
new create(ff:B) => f=ff
fun ref mix(a:A):A => this.f=a.f; a
fun ref nonMix(a:A):A => f.f=a.f.f; a
fun box clone():A iso^ =>

var x:B iso = f.clone(); recover A(consume x) end
var a1 = A(B(0))
var a2 =

A(B(1)); var l1:A iso = a1.mix(a2).clone() //(1) OK
var l2:A iso =

recover var a2=A(B(1));a1.mix(a2).clone().mix(a2) end
//(2) ERROR

var l3:A iso =
recover var a2 = A(B(1)); a1.nonMix(a2) end//(3) ERROR

As in our approach, Pony discriminates line (1) from line (2), causing code
to be well-typed and ill-typed, respectively. However, to do so, Pony needs a
modifier iso^ in the return type of clone, whereas, as noted after the code
of Example 6.4.1, in our approach the return type of clone can be mut, since
the fact that there is no connection between the result and this is expressed
by the coeffect. Moreover, to be able to obtain an iso from the clonemethod,
Pony needs to insert explicit recover instructions. In the case of class A
where the field is an object, Pony needs to explicitly use consume to ensure
uniqueness, whereas in our approach promotion takes place implicitly and
uniqueness is ensured by linearity. Finally, Pony rejects line (3) as well, whereas,
in our approach, this expression is correctly recognized to be a capsule, since
the external variable a1 is modified, but not connected to the final result.
We end the section with an example illustrating how our type system can

prevent sharing of parameters, something not possibile in the work by Gordon
et al. [35] and Pony.

static void

addPlayer(Team {ℓ } t1, Team {ℓ ′ } t2, Players {ℓ } p1, Players {ℓ ′ } p2)
{/*ℓ ≠ ℓ ′*/} {while(true){
if(p1.isEmpty()||p2.isEmpty()) {/*error*/}
if(p1.top().skill==p2.top().skill)

{t1.add(p1.top());t2.add(p2.top());return;}
else{removeMoreSkilled(p1,p2);}

}

128 beyond structural coeffects

The method takes two teams, t1 and t2, as parameters. Both want to add a
reserve player from their respective lists p1 and p2, sorted with best players
first. However, to keep the game fair, the two reserve players can only be
added if they have the same skill level. The sharing coeffects express that each
team can only add players from its list of reserve players.

7
Related work

Our major sources of inspiration have been Petricek’s thesis [50, 51, 52], intro-
ducing the notion of coeffect, the Granule project, see https://granule-project.
github.io, showing how to design a fully-fledged language equipped with a
graded type system as shown by Orchard, Liepelt, and Harley Eades III [49],
and Choudhury et al. [18], introducing instrumented semantics in order to
prove resource-aware soundness.
We describe the first two and the third, together with other relevant con-

tributions, in Section 7.1 and Section 7.2, respectively. In Section 7.3, instead,
we provide an overview of the wide literature about type systems for tracking
sharing and/or immutability.

7 .1 Resource-aware type systems
Coeffects were firstly introduced by Petricek, Orchard, and Mycroft [52] and
further analyzed by Petricek, Orchard, and Mycroft [51]. In particular, Petricek,
Orchard, and Mycroft [51] develop a generic coeffect system which augments
the simply-typed 𝜆-calculus with context annotations indexed by coeffect
shapes. The proposed framework is very abstract, and the authors focus on two
opposite instances: structural (per-variable) and flat (whole context) coeffects,
identified by specific choices of context shapes. The authors present many
examples (liveness, dataflow, dynamic scoping).
Most of the subsequent literature on coeffects focuses on structural ones,

as those from Chapter 3 to Chapter 5, for which there is a clear algebraic
description in terms of semirings. This was first noticed by Brunel et al. [16],
who developed a framework of structural coeffects for a functional language.
His approach is inspired by a generalization of the exponential modality of
linear logic, see, e.g., Breuvart and Pagani [15]. That is, as discussed in Chapter 1,
the distinction between linear and unrestricted variables of linear systems is
generalized to have variables decorated by coeffects, or grades, that determine
how much they can be used.

Other graded type systems are explored by Abel and Bernardy [2], Atkey [5],
and Ghica and Smith [31], also combining coeffects with other programming
features, such as computational effects, as shown by Dal Lago and Gavazzo
[26], Gaboardi et al. [30], and Torczon et al. [54] and Orchard, Liepelt, and
Harley Eades III [49], dependent types, as shown by Atkey [5], Choudhury et al.
[18], and McBride [46], and polymorphism, as shown by Abel and Bernardy [2].

129

https://granule-project.github.io
https://granule-project.github.io

130 related work

In all these papers, the process of tracking usage through grades is a powerful
method of instrumenting type systems with analyses of irrelevance and lin-
earity that have practical benefits like erasure of irrelevant terms (resulting in
speed-up) and compiler optimizations (such as in-place update).

The type system presented in Chapter 5 may look similar to the one presen-
ted by McBride [46], except that grades are assigned to typing judgements
instead of types, but there are relevant differences. The first one is typing rule
for lambda abstraction. Below we report both the rules where in our rule we
do not consider recursion for the sake of simplicity:

(Lam)
𝛤, x :𝑟1 𝜏1 ⊢ e : 𝜏

𝑟2
2

𝑟 · 𝛤 ⊢ 𝜆x .e : (𝜏𝑟11 → 𝜏
𝑟2
2)𝑟

(Lam-McBride)
𝛤, x :𝑟 ·𝑠 𝜏1 ⊢ e :𝑟 𝜏2

𝛤 ⊢ 𝜆x .e :𝑟 (x :𝑠 𝜏1) → 𝜏2
We can notice that in (Lam) the grade on the type of the lambda expression

is free, whereas the grade on the conclusion judgment in (Lam-McBride) is
not. Not only that, but the grade on the consequence judgement interact with
the grade of the input in the premise context. The fact is that in our system
grades can be nested, whereas in McBride’s one grades are combined; the
structure of types is different. In our system arrow types, for example, have a
grade representing how many times the function can be used, one counting
how many times the input is used in the body and one grade counting how
many times the output can be used, whereas McBride’s arrow types annotates
only the usage of input in the body. Another important difference is that in
the system proposed by McBride [46] substitution is not sound, as observed by
Atkey [5], whereas we proved a substitution lemma for value in Lemma 5.2.8.

As said above, Granule is a fully-fledged functional programming language
following the principles of resource-aware type systems, as described by and
Orchard, Liepelt and Harley Eades III [49].Granule is equipped with graded
types, where different kinds of grades can be used at the same time, including
naturals for exact usage, security levels, intervals, infinity, and products of
coeffects. We owe to Granule, first of all, the overall aim of providing founda-
tions for the design of a resource-aware programming language. We focused
on the object-oriented, rather than functional, paradigm. Moreover, we were
inspired by Granule for the idea of allowing different kinds of grades to coexist;
we pushed forward this approach to have a grade algebra which is not fixed,
but extendable by the programmer with user-defined grades.
Hanukaev and Harley Eades III [38] present a type system inspired by Ad-

joint Logic, called Glad, offering a smooth way of combining an arbitrary
number of logics with different substructural rules and different resource semir-
ings, identified bymodes. This idea has many similarities with the construction
in Section 4.2. Notably, the coexisting modes are defined by a functor from a
preordered set of indexes (corresponding to our kinds with their partial order)
to the category of modes (corresponding to our category of grade algebras).
The construction is different, notably, to combine elements of different modes
𝜅 and 𝜇, they require 𝜅 ≤ 𝜇, and apply the corresponding morphism to the

7.2 resource-aware semantics 131

element of mode 𝜅 . In Section 4.2, instead, our aim is to always be able to com-
bine grades of different kinds, by mapping both in grades of their (assumed to
exist) least common ancestor. We leave to further work a detailed comparison.
McBride [46] and Wood and Atkey [56] firstly observed, as already men-

tioned, that contexts in a structural coeffect system form a module over the
semiring of grades, event though they do not use this structure in its full
generality, restricting themselves to free modules, that is, to structural coeffect
systems.

7 .2 Resource-aware semantics

The main source of inspiration for our resource-aware semantics and resource-
aware soundness results has been what done by Choudhury et al. [18]. In
this work, the authors develop GraD, a graded dependent type system that
includes functions, tensor products, sums, and a unit type. They define an
instrumented operational semantics which tracks usage of resources, and
prove that the graded type system is sound with respect to such instrumented
semantics. Moreover, they derive from this theorem several useful properties,
such as standard type soundness, non-interference of irrelevant resources in
computation and single pointer property for linear resources.
The lambda-calculus with molteplicities, proposed in an earlier paper by

Boudol [13], can be seen as providing a kind of resource-aware semantics. In
this work, inspired by the encoding of lazy 𝜆-calculus in 𝜋-calculus as done
by Milner [48], variable occurrences are replaced once at a time when needed,
as in our instrumented semantics. The environment associates to variables a
multiset (bag) of values and, each time a variable occurrence has to be replaced,
a value is non-deterministically chosen from the bag, so reduction is stuck if
the bag is empty. Differently from our approach, the environment is part of
the syntax of terms, as in explicit substitutions by Abadi et al. [1] and Curien,
Hardin, and Lévy [22]. The number of values in the bag corresponds to a
natural number grade in our framework.
Laird et al. [41] have a different approach to resource-aware semantics.

Here the semantics is described by reduction steps weighted on elements of a
semiring, so they are used to weight reduction paths. The resources, rather than
free variables, are time or space of execution. In the case of a non-deterministic
language, by taking as a semiring booleans with the usual operations, we
can check whether a program can be reduced to a given natural number; the
boolean annotation expresses whether the reduction step does or not what we
expect. If we take as semiring natural numbers, instead, then we can count
how many reduction paths exists for a program to a given natural number; the
annotation keeps track of the paths that do what we expect. Also in this work,
even though the notion of resource is different, we can compare programs
not only with respect to their input-output behaviour, but also by considering
how they consume resources.

132 related work

7 .3 Sharing
The literature on type systems controlling sharing and mutation is huge. We
already provided a detailed comparison of our approach with the two mostly
related proposals, the one proposed by Gordon et al. [35] and Pony [19, 20], in
Section 6.5.
The approach based on modifiers is extended by Castegren and Wrigstad

[17] and Haller and Odersky [37] to compositions of one or more capabilities.
The modes of the capabilities in a type control how resources of that type can
be aliased. The compositional aspect of capabilities is an important difference
from modifiers, as accessing different parts of an object through different
capabilities in the same type gives different properties. By using capabilities it
is possible to obtain an expressivity similar to the type system in Chapter 6,
although with different sharing notions and syntactic constructs. For instance,
the full encapsulation notion by Haller and Odersky [37], apart from the fact
that sharing of immutable objects is not allowed, is equivalent to our caps
guarantee. Their model has a higher syntactic/logic overhead to explicitly
track regions. As for all work preceding Gordon et al. [35], objects need to be
born unique and the type system permits manipulation of data preserving
their uniqueness. With recovery/promotion, instead, we can use normal code
designed to work on conventional shared data, and then recover uniqueness.
An approach alternative to modifiers to restrict the usage of references is

that of ownership, based on enforcing invariants rather than deriving properties.
We refer to the recent work of Milano, Turcotti, and Myers [47] for an up-to-
date survey. The Rust language, considering its “safe” features [40], belongs to
this family as well, and uses ownership for memory management. In Rust, all
references which support mutation are required to be affine, thus ensuring a
unique entry point to a portion ofmutablememory. This relies on a relationship
between linearity and uniqueness recently clarified by Marshall, Vollmer, and
Orchard [45], which proposes a linear calculus withmodalities for non-linearity
and uniqueness with a somewhat dual behaviour. In our approach, instead, the
capsule concept models an efficient ownership transfer. In ownership, when an
object x is “owned” by y, it remains always true that y can only be accessed
through x, whereas the capsule notion is dynamic: a capsule can be “opened”,
that is, assigned to a standard reference and modified, since we can always
recover the capsule guarantee. We also mention that, whereas in Chapter 6
all properties are deep, that is, inherited by the reachable object graph, most
ownership approaches allows one to distinguish subparts of the reachable
object graph that are referred to but not logically owned. This viewpoint has
some advantages, for example Rust uses ownership to control deallocation
without a garbage collector.

An approach based on regions is proposed by Arvidsson et al. [4]. In this
paper, memory is divided in independent regions, which can be open, closed
or suspended. The current state of the region characterizes its allowed usage.
For example, objects of an open region are permitted to reference objects in
suspended regions. Types are decorated with capabilities similar to the modifi-

7.3 sharing 133

ers presented in Chapter 6. A difference is that there is a specific capability for
immutable references of a suspended region, that is, in a sense, a temporary
capability. The type of an expression is given from the point of view of the
currently active region and this is obtained by viewpoint adaptation. An inter-
esting feature is that at a given time only one region is mutable, that is, we
have a single window of mutability.
Reachability types, proposed by Bao et al. [6], qualify types with sets of

reachable variables and guarantee separation if two terms have disjoint quali-
fiers, similarly to what we achieve in Chapter 6 with set of links and transitive
closure. Wei et al. [55] describe a different version, where, instead of always
tracking the transitive closure of reachable variables, only variables reachable
in a single step are tracked, and transitive closures computed only when ne-
cessary, thus preserving chains of reachability over known variables that can
be refined using substitution.

8
Conclusion

The overall outcome of this thesis are design guidelines and formal techniques
to keep track of the usage of resources in programming languages.
A substantial part of the work has been devoted to the object-oriented

paradigm, notably to Java-like languages. We have designed a resource-aware
extension of a paradigmatic Java-like calculus, and proved resource-aware
soundness, meaning that the type system guarantees the possibility of using
resources only when/how they are available. Moreover, we have described
how to give to the programmer the capability to define her/his own grades, by
relying on a formal construction for combining grades of different kinds.

In Chapter 5 we have applied the approach, instead, to a functional language,
posing the new challenges of higher-order functions and recursive types.
Moreover, we have defined the resource-aware semantics in big-step style,
thus avoiding the overhead of grade annotations. We were able to prove
resource-aware soundness, hardly even expressed in the big-step case, by
relying on recently introduced generalized coinductive techniques.

In Chapter 6 we have considered a difficult case of usage of resources, that
is, taking into account sharing in an imperative language. We have shown that
this can be actually tracked by coeffects, by moving from the structural ones
to a more general framework.

We identify the following key novel contributions of the thesis.

smooth resource-awareness We provide guidelines to add resource-
awareness that are very general and mostly independent from the language. As
inmany papers, such generality is achieved by being parametric on an arbitrary
grade algebra, and by considering, as we do in Chapter 5, powerful enough
language features. However, differently from previous work, we add resource-
awareness without requiring ad-hoc changes to the underlying language. The
advantage is to keep, as far as possible, the language unaffected from the point
of view of the programmers.

grades in oo paradigm Whereas graded type systems for functional
calculi have been widely studied in literature, there was, as far as we know,
no previous attempt at investigating resource-awareness in the context of the
object-oriented paradigm, followed by many of the most popular languages
used today. Some of our solutions seem more adequate in that context, e.g., to
have once-graded types and no boxing/unboxing. An important observation

135

136 conclusion

emerged from our work is that, as discussed in Section 5.4, record/object calculi,
where fields can be discarded at runtime, whereas object construction happens
by their sequential evaluation, seems to be hardly compatible with non-affine
grades. In future work we plan to investigate this interesting problem.

extensible grades As already mentioned, we extended the Granule ap-
proach by Orchard, Liepelt and Harley Eades III [49], supporting heterogeneous
grades, in the sense that grades of different kinds are simultaneously available
to the programmer, by allowing the grade algebra to be, rather than fixed once
and for all, extensible by the programmer, similarly to what happens, e.g., with
Java exceptions. The design and implementation of a real Java-like language
are beyond the objectives of this thesis; however, we outline in Section 4.3
two approaches, which can be adopted in general to implement user-defined
grades in a real language. That is, either grades are defined in a different, more
appropriate, language, in our case a simple extension of the Java-like calculus
with special classses; or they are encoded in the language itself, in our case by
relying on Java generic interfaces and classes. In the first approach, we could
even use a language with dependent types, to be able to also prove the required
properties. The second approach could be achieved in different paradigms as
well, e.g., in Haskell, by using type classes.

A prototype implementation of a coeffect checker for MiniJava is available,
by Duso [29]. MiniJava is an imperative extension of the language by Bianchini
et al. [8], and besides assignment includes additional language constructs. Java
annotations are used to decorate coeffect classes and coeffect annotations for
variables.

big-step semantics and grades In Chapter 5 we present the first, at
our knowledge, resource-aware semantics in big-step style. Besides the classical
advantages, such as the higher level of abstraction, in big-step style we avoid
the overhead of grade annotations in subterms. Note also that soundness ex-
pressed for big-step semantics implicitly turns out to be soundness-may, since
the statement is that, for a well-typed term, there a derivable reduction judg-
ment to a result (including divergence), see Theorem 5.3.1 and Theorem 5.3.7.
In small-step style, instead, the standard proof technique by progress and
subject reduction ensures soundness must, that is, that all reduction sequences
do not get stuck; to express soundness-may an ad-hoc formulation is needed,
see Theorem 3.4.2 and Corollary 3.4.9.

non-structural example Finally, in Chapter 6 we show a non-trivial
example of coeffects which can be considered quasi-structural. Indeed, coeffects
cannot be computed per-variable (that is, the sum and scalar multiplication
operators on coeffect contexts are not defined pointwise), but can still be
expressed by annotations on single variables, differently from flat contexts
[50, 51, 52] . This significant example justifies a framework in which coeffect
contexts are modules, including structural coeffect systems as the simplest case.
As future work, it could be interesting to further investigate such framework,

conclusion 137

both at the level of meta-theory and of finding other significant examples.

Besides the specific points mentioned above, we identity the following
particularly interesting directions for future work:

exact usage tracking An interesting fact emerged from our work is
that non-affine grade algebras are a distinguished class; indeed, the fact that
they require exact resource consumption poses a strong constraint, making
impossible to type some constructs, as shown in Section 5.4. However, in
the current instrumented semantics, there is the requirement that needed re-
sources should be available (otherwise reduction gets stuck), but the opposite
constraint that resources should be non-wasted is not expressed. We plan to
investigate what happens by introducing this constraint as well. In this way, we
should be able to express a more powerful resource-aware soundness theorem:
for well-typed programs, there is a reduction which, besided being non-stuck,
is also non-wasting. So, in the case of affine grades, the initially available re-
sources are all exhausted at the end. A possible way to obtain such a semantics
is to consume exactly the required amount when a variable occurrence is
encountered, and, when reducing a compound term, to reduce subterms in
environments obtained by decomposing the original one, mimicking the type
system.

from uniqeness to assumption grades The recent work by Mar-
shall, Vollmer, and Orchard [45] proposes a unified calculus and type system
that incorporates linear, unique, and unrestricted types all at once, building on
the linear lambda-calculus. In this way, the authors nicely clarify the relation
between linearity and uniqueness, sometimes confused in previous literature:
linearity means that some resource is used exactly once, whereas uniqueness
means that there should be at most one reference to the resource. As graded
types are a generalization of linearity, expressing that the resource should be
used with a certain grade rather than exactly once, we believe it would be
interesting to develop a similar generalization for uniqueness. Thinking to
coeffects, where the idea is simpler to explain, when typechecking an expres-
sion e, each variable in the type-and-coeffect context should be annotated by
two coeffects: the usage grade (the standard one), expressing how the variable
is used in e, and the assumption grade, expressing the assumption e can make
about how the variable can be used in a program context enclosing e. With
the terminology of Marshall, Vollmer, and Orchard [45], the two grades track
the future and past usage, respectively. For instance, if both standard and
assumption grades are natural numbers with exact counting, if a variable has
coeffects 1, 0, then this means that x is used linearly in e, and, moreover, e can
safely assume that x will not be used elsewhere, thus expressing a uniqueness
property. We hope this abstract approach could be instantiated to characterize
sharing/immutability properties in the imperative paradigm, as we did in a
more ad-hoc way in Chapter 6.

Bibliography

[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions.
In: Journal of Functional Programming 1.4 (1991), 375–416. doi: 10.1017/
S0956796800000186. Cited on p. 131.

[2] Andreas Abel and Jean-Philippe Bernardy. A unified view of modalities
in type systems. In: Proceedings of ACM on Programming Languages
4.ICFP (2020), 90:1–90:28. doi: 10.1145/3408972. Cited on pp. 7, 9–11, 23,
129.

[3] Davide Ancona, Francesco Dagnino, and Elena Zucca. Reasoning on
Divergent Computations with Coaxioms. In: Proceedings of ACM on
Programming Languages 1.OOPSLA (2017), 81:1–81:26. doi: 10 . 1145 /
3133905. Cited on pp. 59, 76, 78, 79.

[4] Ellen Arvidsson, Elias Castegren, Sylvan Clebsch, Sophia Drossopoulou,
James Noble, Matthew J. Parkinson, and Tobias Wrigstad. Reference
Capabilities for Flexible Memory Management. In: Proceedings of ACM
on Programming Languages 7.OOPSLA2 (2023), pp. 1363–1393. doi:
10.1145/3622846. Cited on p. 132.

[5] Robert Atkey. Syntax and Semantics of Quantitative Type Theory. In:
IEEE Symposium on Logic in Computer Science, LICS 2018. Edited by
Anuj Dawar and Erich Grädel. ACM Press, 2018, pp. 56–65. doi: 10.1145/
3209108.3209189. Cited on pp. 7, 10, 129, 130.

[6] Yuyan Bao, Guannan Wei, Oliver Bracevac, Yuxuan Jiang, Qiyang He,
and Tiark Rompf. Reachability types: tracking aliasing and separation
in higher-order functional programs. In: Proc. ACM Program. Lang.
5.OOPSLA (2021), pp. 1–32. doi: 10.1145/3485516. url: https://doi.org/
10.1145/3485516. Cited on p. 133.

[7] Riccardo Bianchini. Monitoring for Resource-Awareness. In: Verification
and Monitoring at Runtime Execution, VORTEX 2023. Edited by Davide
Ancona and Giorgio Audrito. ACM Press, 2023, pp. 13–16. doi: 10.1145/
3605159.3605856. Cited on p. 3.

[8] Riccardo Bianchini, Francesco Dagnino, Paola Giannini, and Elena
Zucca. A Java-like calculus with heterogeneous coeffects. In: Theor-
etical Computer Science 971 (2023), p. 114063. doi: https://doi.org/10.
1016/j.tcs.2023.114063. Cited on pp. 3, 40, 136.

[9] Riccardo Bianchini, Francesco Dagnino, Paola Giannini, and Elena
Zucca. A Java-like calculus with user-defined coeffects. In: ICTCS’22
- Italian Conference on Theoretical Computer Science. Edited by Ugo
Dal Lago and Daniele Gorla. Vol. 3284. CEUR Workshop Proceedings.
CEUR-WS.org, 2022, pp. 66–78. Cited on pp. 3, 40.

139

https://doi.org/10.1017/S0956796800000186
https://doi.org/10.1017/S0956796800000186
https://doi.org/10.1145/3408972
https://doi.org/10.1145/3133905
https://doi.org/10.1145/3133905
https://doi.org/10.1145/3622846
https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1145/3485516
https://doi.org/10.1145/3485516
https://doi.org/10.1145/3485516
https://doi.org/10.1145/3605159.3605856
https://doi.org/10.1145/3605159.3605856
https://doi.org/https://doi.org/10.1016/j.tcs.2023.114063
https://doi.org/https://doi.org/10.1016/j.tcs.2023.114063

140 Bibliography

[10] Riccardo Bianchini, Francesco Dagnino, Paola Giannini, and Elena
Zucca. Multi-graded Featherweight Java. In: European Conference on
Object-Oriented Programming, ECOOP 2023. Edited by Karim Ali and
Guido Salvaneschi. Vol. 263. LIPIcs. 756, 2023, 3:1–3:27. doi: 10.4230/
LIPIcs.ECOOP.2023.3. Cited on pp. 3, 40.

[11] Riccardo Bianchini, Francesco Dagnino, Paola Giannini, and Elena
Zucca. Resource-Aware Soundness for Big-Step Semantics. In: Proceed-
ings of ACM on Programming Languages 7.OOPSLA2 (2023), pp. 1281–
1309. doi: 10.1145/3622843. url: https://doi.org/10.1145/3622843. Cited
on p. 4.

[12] Riccardo Bianchini, Francesco Dagnino, Paola Giannini, Elena Zucca,
and Marco Servetto. Coeffects for sharing and mutation. In: Proceedings
of ACM on Programming Languages 6.OOPSLA (2022), pp. 870–898. doi:
10.1145/3563319. Cited on pp. 4, 96.

[13] Gérard Boudol. The Lambda-Calculus with Multiplicities (Abstract). In:
Concurrency Theory, CONCUR 1993. Edited by Eike Best. Vol. 715. Lecture
Notes in Computer Science. Springer, 1993, pp. 1–6. doi: 10.1007/3-540-
57208-2_1. Cited on pp. 2, 131.

[14] John Boyland. Semantics of Fractional Permissions with Nesting. In:
ACM Transactions on Programming Languages and Systems 32.6 (2010).
Cited on p. 126.

[15] Flavien Breuvart and Michele Pagani. Modelling Coeffects in the Rela-
tional Semantics of Linear Logic. In: Computer Science Logic, CSL 2015.
Edited by Stephan Kreutzer. Vol. 41. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2015, pp. 567–581. doi: 10.4230/LIPIcs.CSL.
2015.567. Cited on pp. 116, 129.

[16] Aloïs Brunel, Marco Gaboardi, Damiano Mazza, and Steve Zdancewic.
A Core Quantitative Coeffect Calculus. In: European Symposium on
Programming, ESOP 2013. Edited by Zhong Shao. Vol. 8410. Lecture Notes
in Computer Science. Springer, 2014, pp. 351–370. doi: 10.1007/978-3-
642-54833-8_19. Cited on pp. 7, 10, 129.

[17] Elias Castegren and Tobias Wrigstad. Reference Capabilities for Concur-
rency Control. In: European Conference on Object-Oriented Programming,
ECOOP 2016. Edited by Shriram Krishnamurthi and Benjamin S. Lerner.
Vol. 56. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016,
5:1–5:26. Cited on p. 132.

[18] PritamChoudhury, Harley Eades III, RichardA. Eisenberg, and Stephanie
Weirich. A graded dependent type systemwith a usage-aware semantics.
In: Proceedings of ACM on Programming Languages 5.POPL (2021), pp. 1–
32. doi: 10.1145/3434331. Cited on pp. 2, 7, 10, 16, 129, 131.

[19] Sylvan Clebsch. ’Pony’: co-designing a type system and a runtime. PhD
thesis. Imperial College London, UK, 2017. url: https://ethos.bl.uk/
OrderDetails.do?uin=uk.bl.ethos.769552. Cited on pp. 124, 125, 132.

https://doi.org/10.4230/LIPIcs.ECOOP.2023.3
https://doi.org/10.4230/LIPIcs.ECOOP.2023.3
https://doi.org/10.1145/3622843
https://doi.org/10.1145/3622843
https://doi.org/10.1145/3563319
https://doi.org/10.1007/3-540-57208-2_1
https://doi.org/10.1007/3-540-57208-2_1
https://doi.org/10.4230/LIPIcs.CSL.2015.567
https://doi.org/10.4230/LIPIcs.CSL.2015.567
https://doi.org/10.1007/978-3-642-54833-8_19
https://doi.org/10.1007/978-3-642-54833-8_19
https://doi.org/10.1145/3434331
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.769552
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.769552

Bibliography 141

[20] Sylvan Clebsch, Sophia Drossopoulou, Sebastian Blessing, and Andy
McNeil. Deny capabilities for safe, fast actors. In: International Workshop
on Programming Based on Actors, Agents, and Decentralized Control,
AGERE! 2015. Edited by Elisa Gonzalez Boix, Philipp Haller, Alessandro
Ricci, and Carlos Varela. ACM Press, 2015, pp. 1–12. Cited on pp. 124,
125, 132.

[21] Patrick Cousot and Radhia Cousot. Inductive Definitions, Semantics
and Abstract Interpretations. In: ACM Symposium on Principles of Pro-
gramming Languages, POPL 1992. Edited by Ravi Sethi. ACM Press, 1992,
pp. 83–94. doi: 10.1145/143165.143184. Cited on pp. 59, 76, 78.

[22] Pierre-Louis Curien, Thérèse Hardin, and Jean-Jacques Lévy. Conflu-
ence Properties of Weak and Strong Calculi of Explicit Substitutions.
In: J. ACM 43.2 (1996), pp. 362–397. doi: 10.1145/226643.226675. url:
https://doi.org/10.1145/226643.226675. Cited on p. 131.

[23] Francesco Dagnino. A Meta-theory for Big-step Semantics. In: ACM
Transactions on Computational Logic 23.3 (2022), 20:1–20:50. doi: 10.
1145/3522729. Cited on pp. 32, 74, 78.

[24] Francesco Dagnino. Coaxioms: flexible coinductive definitions by infer-
ence systems. In: Logical Methods in Computer Science 15.1 (2019). doi:
10.23638/LMCS-15(1:26)2019. Cited on pp. 59, 76, 78, 79.

[25] Francesco Dagnino, Viviana Bono, Elena Zucca, andMariangiola Dezani-
Ciancaglini. Soundness Conditions for Big-Step Semantics. In: European
Symposium on Programming, ESOP 2020. Edited by PeterMüller. Vol. 12075.
Lecture Notes in Computer Science. Springer, 2020, pp. 169–196. doi:
10.1007/978-3-030-44914-8_7. Cited on pp. 32, 74.

[26] Ugo Dal Lago and Francesco Gavazzo. A relational theory of effects and
coeffects. In: Proceedings of ACM on Programming Languages 6.POPL
(2022), pp. 1–28. doi: 10.1145/3498692. Cited on p. 129.

[27] Rocco De Nicola and Matthew Hennessy. Testing Equivalences for
Processes. In: Theoretical Computer Science 34.1 (1984), pp. 83 –133. doi:
https://doi.org/10.1016/0304-3975(84)90113-0. Cited on pp. 32, 74.

[28] Werner Dietl, Sophia Drossopoulou, and Peter Müller. Generic Universe
Types. In: European Conference on Object-Oriented Programming, ECOOP
2007. Edited by Erik Ernst. Vol. 4609. Lecture Notes in Computer Science.
Springer, 2007, pp. 28–53. Cited on pp. 23, 28.

[29] Giulio Duso. Implementazione di controllo di tipi e coeffetti per MiniJava.
Available at https://github.com/DusoGiulio/Coeff_Inference/tree/main.
MA thesis. Università del Piemonte orientale, 2023. Cited on p. 136.

[30] Marco Gaboardi, Shin-ya Katsumata, Dominic A. Orchard, Flavien
Breuvart, and Tarmo Uustalu. Combining effects and coeffects via grad-
ing. In: ACM International Conference on Functional Programming, ICFP
2016. Edited by Jacques Garrigue, Gabriele Keller, and Eijiro Sumii. ACM

https://doi.org/10.1145/143165.143184
https://doi.org/10.1145/226643.226675
https://doi.org/10.1145/226643.226675
https://doi.org/10.1145/3522729
https://doi.org/10.1145/3522729
https://doi.org/10.23638/LMCS-15(1:26)2019
https://doi.org/10.1007/978-3-030-44914-8_7
https://doi.org/10.1145/3498692
https://doi.org/https://doi.org/10.1016/0304-3975(84)90113-0
https://github.com/DusoGiulio/Coeff_Inference/tree/main

142 Bibliography

Press, 2016, pp. 476–489. doi: 10.1145/2951913.2951939. Cited on pp. 7,
10, 129.

[31] Dan R. Ghica and Alex I. Smith. Bounded Linear Types in a Resource
Semiring. In: European Symposium on Programming, ESOP 2013. Edited
by Zhong Shao. Vol. 8410. Lecture Notes in Computer Science. Springer,
2014, pp. 331–350. doi: 10.1007/978-3-642-54833-8_18. Cited on pp. 7,
10, 129.

[32] Paola Giannini, Tim Richter, Marco Servetto, and Elena Zucca. Tracing
sharing in an imperative pure calculus. In: Science of Computer Program-
ming 172 (2019). Extended version, CoRR, https://arxiv.org/abs/1803.
05838, pp. 180–202. doi: 10.1016/j.scico.2018.11.007. Cited on pp. 90, 111.

[33] Paola Giannini, Marco Servetto, Elena Zucca, and James Cone. Flexible
recovery of uniqueness and immutability. In: Theoretical Computer
Science 764 (2019). Extended version, CoRR, https://arxiv.org/abs/1807.
00137, pp. 145–172. doi: 10.1016/j.tcs.2018.09.001. Cited on pp. 90, 93,
111, 126.

[34] Jean-Yves Girard. Linear Logic. In: Theoretical Computer Science 50
(1987), pp. 1–102. doi: 10.1016/0304-3975(87)90045-4. Cited on pp. 1, 85.

[35] Colin S. Gordon, Matthew J. Parkinson, Jared Parsons, Aleks Brom-
field, and Joe Duffy. Uniqueness and reference immutability for safe
parallelism. In: ACM Symp. on Object-Oriented Programming: Systems,
Languages and Applications 2012. Edited by Gary T. Leavens and Mat-
thew B. Dwyer. ACM Press, 2012, pp. 21–40. Cited on pp. 124–127, 132.

[36] Alexander Grothendieck. Catégories fibrées et descente. In: Revêtements
étales et groupe fondamental. Springer, 1971, pp. 145–194. Cited on p. 44.

[37] Philipp Haller and Martin Odersky. Capabilities for uniqueness and
borrowing. In: European Conference on Object-Oriented Programming,
ECOOP 2010. Edited by Theo D’Hondt. Vol. 6183. Lecture Notes in Com-
puter Science. Springer, 2010, pp. 354–378. Cited on p. 132.

[38] Peter Hanukaev and Harley Eades III. Combining Dependency, Grades,
and Adjoint Logic. In: ACM SIGPLAN International Workshop on Type-
Driven Development, TyDe 2023. Edited by Youyou Cong and Pierre-
Évariste Dagand. ACM Press, 2023, pp. 58–70. doi: 10.1145/3609027.
3609408. Cited on p. 130.

[39] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight
Java: AMinimal Core Calculus for Java and GJ. In: ACM Symp. on Object-
Oriented Programming: Systems, Languages and Applications 1999. ACM
Press, 1999, pp. 132–146. doi: 10.1145/320384.320395. Cited on pp. 15, 16.

[40] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.
RustBelt: securing the foundations of the rust programming language.
In: Proceedings of ACM on Programming Languages 2.POPL (2018), 66:1–
66:34. doi: 10.1145/3158154. Cited on p. 132.

https://doi.org/10.1145/2951913.2951939
https://doi.org/10.1007/978-3-642-54833-8_18
https://arxiv.org/abs/1803.05838
https://arxiv.org/abs/1803.05838
https://doi.org/10.1016/j.scico.2018.11.007
https://arxiv.org/abs/1807.00137
https://arxiv.org/abs/1807.00137
https://doi.org/10.1016/j.tcs.2018.09.001
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1145/3609027.3609408
https://doi.org/10.1145/3609027.3609408
https://doi.org/10.1145/320384.320395
https://doi.org/10.1145/3158154

Bibliography 143

[41] Jim Laird, Giulio Manzonetto, Guy McCusker, and Michele Pagani.
Weighted Relational Models of Typed Lambda-Calculi. In: IEEE Sym-
posium on Logic in Computer Science, LICS 2013. IEEE Computer Society,
2013, pp. 301–310. doi: 10.1109/LICS.2013.36. Cited on p. 131.

[42] Xavier Leroy and Hervé Grall. Coinductive big-step operational se-
mantics. In: Information and Computation 207.2 (2009), pp. 284–304.
doi: 10.1016/j.ic.2007.12.004. Cited on pp. 59, 76, 78.

[43] Paul Blain Levy, John Power, and Hayo Thielecke. Modelling environ-
ments in call-by-value programming languages. In: Information and
Computation 185.2 (2003), pp. 182–210. doi: 10.1016/S0890-5401(03)
00088-9. Cited on pp. 61, 63.

[44] Saunders Mac Lane. Categories for the working mathematician. Vol. 5.
Springer Science & Business Media, 2013. Cited on p. 43.

[45] Daniel Marshall, Michael Vollmer, and Dominic Orchard. Linearity and
Uniqueness: An Entente Cordiale. In: European Symposium on Program-
ming, ESOP 2022. Edited by Ilya Sergey. Vol. 13240. Lecture Notes in
Computer Science. Springer, 2022, pp. 346–375. doi: 10.1007/978-3-030-
99336-8_13. Cited on pp. 132, 137.

[46] Conor McBride. I Got Plenty o’ Nuttin’. In: A List of Successes That Can
Change the World - Essays Dedicated to Philip Wadler on the Occasion
of His 60th Birthday. Edited by Sam Lindley, Conor McBride, Philip W.
Trinder, and Donald Sannella. Vol. 9600. Lecture Notes in Computer
Science. Springer, 2016, pp. 207–233. doi: 10.1007/978-3-319-30936-1_12.
Cited on pp. 7, 10, 14, 89, 129–131.

[47] Mae Milano, Joshua Turcotti, and Andrew C. Myers. A flexible type
system for fearless concurrency. In: Programming Language Design and
Implementation, PLDI 2022. Edited by Ranjit Jhala and Isil Dillig. ACM
Press, 2022, pp. 458–473. doi: 10.1145/3519939.3523443. Cited on p. 132.

[48] Robin Milner. Functions as processes. Research Report RR-1154. INRIA,
1990. url: https://inria.hal.science/inria-00075405. Cited on p. 131.

[49] Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III. Quant-
itative program reasoning with graded modal types. In: Proceedings
of ACM on Programming Languages 3.ICFP (2019), 110:1–110:30. doi:
10.1145/3341714. Cited on pp. 7, 10, 15, 40, 129, 130, 136.

[50] Tomas Petricek. Context-aware programming languages. PhD thesis.
University of Cambridge, 2017. Cited on pp. 129, 136.

[51] Tomas Petricek, Dominic A. Orchard, and Alan Mycroft. Coeffects: a
calculus of context-dependent computation. In: ACM International Con-
ference on Functional Programming, ICFP 2014. Edited by Johan Jeuring
and Manuel M. T. Chakravarty. ACM Press, 2014, pp. 123–135. doi:
10.1145/2628136.2628160. Cited on pp. 129, 136.

https://doi.org/10.1109/LICS.2013.36
https://doi.org/10.1016/j.ic.2007.12.004
https://doi.org/10.1016/S0890-5401(03)00088-9
https://doi.org/10.1016/S0890-5401(03)00088-9
https://doi.org/10.1007/978-3-030-99336-8_13
https://doi.org/10.1007/978-3-030-99336-8_13
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1145/3519939.3523443
https://inria.hal.science/inria-00075405
https://doi.org/10.1145/3341714
https://doi.org/10.1145/2628136.2628160

144 Bibliography

[52] Tomas Petricek, Dominic A. Orchard, and Alan Mycroft. Coeffects:
Unified Static Analysis of Context-Dependence. In: Automata, Lan-
guages and Programming, ICALP 2013. Edited by Fedor V. Fomin, Rusins
Freivalds, Marta Z. Kwiatkowska, and David Peleg. Vol. 7966. Lecture
Notes in Computer Science. Springer, 2013, pp. 385–397. doi: 10.1007/
978-3-642-39212-2_35. Cited on pp. 89, 129, 136.

[53] Emily Riehl. Category theory in context. Courier Dover Publications,
2017. Cited on p. 43.

[54] Cassia Torczon, Emmanuel Suárez Acevedo, Shubh Agrawal, Joey Velez-
Ginorio, and Stephanie Weirich. Effects and Coeffects in Call-By-Push-
Value (Extended Version). In: CoRR abs/2311.11795 (2023). doi: 10.48550/
ARXIV.2311.11795. url: https://doi.org/10.48550/arXiv.2311.11795. Cited
on pp. 16, 129.

[55] GuannanWei, Oliver Bracevac, Songlin Jia, Yuyan Bao, and Tiark Rompf.
Polymorphic Reachability Types: Tracking Freshness, Aliasing, and
Separation in Higher-Order Generic Programs. In: CoRR abs/2307.13844
(2023). doi: 10.48550/ARXIV.2307.13844. url: https://doi.org/10.48550/
arXiv.2307.13844. Cited on p. 133.

[56] James Wood and Robert Atkey. A Framework for Substructural Type
Systems. In: European Symposium on Programming, ESOP 2022. Edited
by Ilya Sergey. Vol. 13240. Lecture Notes in Computer Science. Springer,
2022, pp. 376–402. doi: 10.1007/978-3-030-99336-8_14. Cited on pp. 7,
10, 14, 89, 131.

[57] Andrew K. Wright and Matthias Felleisen. A Syntactic Approach to
Type Soundness. In: Information and Computation 115.1 (1994), pp. 38–94.
doi: 10.1006/inco.1994.1093. Cited on p. 79.

https://doi.org/10.1007/978-3-642-39212-2_35
https://doi.org/10.1007/978-3-642-39212-2_35
https://doi.org/10.48550/ARXIV.2311.11795
https://doi.org/10.48550/ARXIV.2311.11795
https://doi.org/10.48550/arXiv.2311.11795
https://doi.org/10.48550/ARXIV.2307.13844
https://doi.org/10.48550/arXiv.2307.13844
https://doi.org/10.48550/arXiv.2307.13844
https://doi.org/10.1007/978-3-030-99336-8_14
https://doi.org/10.1006/inco.1994.1093

	Abstract
	Acknowledgements
	Contents
	Introduction
	Resource-awareness
	Terminology and notations
	Coeffect systems
	Graded type systems
	Grade algebras and coeffect contexts

	Graded Featherweight Java
	Java-like calculus
	Resource-aware semantics
	Resource-aware type system
	Resource-aware soundness

	Multi-graded Featherweight Java
	Combining grades
	A general construction
	User-defined grades

	Beyond object-oriented and small-steps
	Functional calculus and resource-aware semantics
	Resource-aware type system
	Resource-aware soundness
	Programming examples and discussions

	Beyond structural coeffects
	Imperative Java-like calculus
	Sharing and mutation
	Coeffects for sharing
	Case study: type modifiers for uniqueness and immutability
	Expressive power

	Related work
	Resource-aware type systems
	Resource-aware semantics
	Sharing

	Conclusion

