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A B S T R A C T   

In this review paper, the main geometrical characteristics of sea ripples (the smallest morphological patterns that 
are observed at the bottom of sea waves) are reviewed together with the physical mechanisms that give rise to 
their appearance and control their time development. Moreover, we provide a summary of both the mathe
matical tools (stability analyses) and empirical formulae that can be used to predict their appearance and some of 
their geometrical characteristics. The ripples play a relevant role in the mechanics of coastal sediment transport 
since usually the flow separates at the ripple crests and generates vortex structures that pick-up the sediments 
from the bottom and put them into suspension. Moreover, the vortex structures shed by the ripples significantly 
affect wave damping and flow resistance.   

1. Introduction 

Ripples are periodic morphological patterns that appear at the sea 
bottom and are characterized by a size of the order of tens of centi
metres. These bedforms are generated and maintained by the interaction 
of the flowing sea water with cohesionless sediments (usually sand) that 
make up the bottom. Ripples are genetically similar to both sand waves 
and tidal ridges as well as river dunes and other morphological patterns 
observed along river (see a.o. Engelund and Fredsoe (1982), Garotta 
et al. (2006), Luchi et al. (2012), Bolla Pittaluga and Imran (2014)), 
since they are originated by the instability of the flat configuration of the 
bottom. This instability leads to the growth of bottom wavinesses of 
different lengths depending on the characteristics of both the sand and 
the water flow. There seems to be a continuum of bedforms from the 
smallest ripples (centimetres long) to the giant bedforms (kilometres 
long). Even though the ripples are the smallest bedforms, they play a 
prominent role in many transport processes since, usually, the flow 
separates at their crests and the vortices that are generated increase 
momentum transfer, sediment transport and, in general, mixing phe
nomena. Moreover, for high values of the bottom shear stress, the ripples 
are washed out and large amounts of sediment are put into suspension 
with significant effects on the fluxes of nutrients, oxigen and carbonates 
(Tengberg et al. (2003)). 

As pointed out by Amos et al. (2019), the literature on ripples is 
immense since, after the first publication of Darwin (1883), new results 

are continuously produced and unavoidably it is not possible to mention 
all the contributions on this subject. Hereinafter, we try to provide an 
overview of the results that, in our opinion, are the most relevant. 

Usually, ripples are classified into two main groups depending on the 
characteristics of the flow that originates them: current ripples and wave 
ripples. The former are originated by a steady current that drags the 
sediment in the flow direction, the latter are originated by the to and fro 
motion of the water produced close to the sea bottom by a propagating 
or standing surface wave. Hereinafter, we focus our attention on wave 
ripples since current ripples are dealt in Vittori and Blondeaux (2022). 
Even restricting our attention to wave ripples, different morphological 
patterns can be identified on the basis of their shape. 

By analysing field data, Komar (1974) and Clifton and Dingler 
(1984) showed that the crest-to-crest distance of wave ripples either 
scales to the near-bed wave orbital diameter (orbital ripples) or to the 
grain size (anorbital ripples). In particular anorbital ripples appear when 
the ratio between the amplitude of the fluid oscillations close to the 
bottom and the sediment size d is very large and these bedforms are 
characterized by a wavelength which usually falls between 400d and 
600d (a more precise value can not be given since field observations 
show a large scatter). At last, suborbital wave ripples are defined as a 
transition class between orbital and anorbital ripples and their wave
length depends both on the wave orbital diameter and the grain size. 
Attempts to predict the ripple characteristics from the knowledge of the 
sediment size and the wave orbital diameter have been made (Sleath 
(1984)) but a widely accepted approach does not exist yet. 
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Recent field observations show that bedforms characterized by 
different length scales might occur simultaneously. For example, Hanes 
et al. (2001) observed a clear bimodal distribution of ripple wavelength 
with two peaks, one for short wave ripples (SWR), characterized by a 
wavelegth smaller than 0.35 m, and one for long wave ripples (LWR), 
characterized by a wavelength longer than 0.5 m. The bimodality sug
gest that either SWR and LWR have different formation mechanisms 
(Boyd et al. (1988), Hanes et al. (2001), Grasmeijer (2002)) or the 
appearance of these bedforms is simply due to the growth of different 
unstable modes. It is not uncommon to observe both two-dimensional 
and three-dimensional ripples (see for example the book of Sleath 
(1984)) as well as regular and irregular bottom profiles. However, in the 
modelling of large scale phenomena, wave ripples are often considered 

just as a bottom roughness, the size of which depends on the height and 
length of the bottom forms but not on their planform. 

Since we share the opinion expressed by De Vriend (2001) that the 
research on morphodynamics should be based on i) field and laboratory 
observations, ii) theoretical investigations and iii) numerical studies, in 
the following we describe both field and laboratory data and make a 
brief overwiev of the theoretical analyses as well as of the numerical 
investigations, which are a powerful tool to obtain a detailed picture of a 
phenomenon but still need the formulation of ‘ad hoc’ models and a 
careful verification of the results using the experimental measurements. 
The aim of this paper is to make an overview of the tools available to 
predict the appearance of ripples on the sea bottom and to determine 
their main geometrical characteristics. Indeed sea ripples have different 

Main symbols 

A* any symbol with a star denotes the complex conjugate of 
the symbol (e.g. A* is the complex conjugate of A) 

a amplitude of the sea wave 
A(t) dimensionless function of time describing the growth/ 

decay of the amplitude of the bottom perturbation 
A1(t),A2(t),A3(t) dimensionless function of time describing the 

growth/decay of the amplitude of the three components of 
the bottom perturbation 

d mean grain size 
D symmetric part of the velocity gradient tensor 

D* =
[
(s− 1)gd3

ν2

]1/3
= R2/3

p sediment diffusivity due to turbulence 

Fd = U0̅̅̅̅̅̅̅̅̅̅̅̅
(s− 1)gd

√ =
̅̅̅̅̅̅ψd

√ sediment Froude number 

g gravitational acceleration 

Ga = R2
p =

(s− 1)gd3

ν2 Galileo number 
h mean water depth 
hr ripple height 
i =

̅̅̅̅̅̅̅
− 1

√
imaginary unit 

J Jacobian of the transformation (25) 
k = 2π

L wavenumber of the sea wave 
ks Nikuradse roughness 
ℓ1,ℓ2 lengths of the down-current and up-current sides of the 

ripple 
L wavelength of the sea wave 
n bottom porosity 
p pressure 
P modified pressure that is equal to the pressure minus the 

hydrostatic contribution, i.e. P = p+ ρg(z − η)
por porosity of the bottom material 
(
Qx,Qy

)
horizontal components of the sediment transport rate per 
unit width 

(
QBx,QBy

)
horizontal components of the bed load sediment 

transport rate per unit width 
(
QPx,QPy

)
horizontal components of the sediment transport rate per 

unit width due to the bottom slope 
(
QSx,QSy

)
horizontal components of the suspended load sediment 

transport rate per unit width 
r̂ = U0

ωh0 
Keulegan number 

Rd = U0d
ν Reynolds number of the sediment particle 

Re =
U2

0
νω =

R2
δ

2 flow Reynolds number 
Rδ = U0δ

ν flow Reynolds number 

Rp =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(s − 1)gd3
√

ν sediment Reynolds number 
s =

ρs
ρ relative density 

t time coordinate 
T period of the sea waves 
(u, v,w) velocity components in the Cartesian coordinate system 
us steady velocity component just outside the bottom 

boundary layer 
uslip slip velocity 
uτ friction velocity 
U0 amplitude of the oscillations of the horizontal velocity 

component close to the bottom 
ws sediment fall velocity 
(x, y, z) Cartesian coordinate system with the z*-axis vertical and 

pointing upwards 
z vertical coordinate 
zb0 elevation of the flat bottom 
zr bottom roughness 
α = 2π

λr 
wavenumber of a two-dimensional bottom perturbation 

(
αx,αy

)
wavenumbers of the generic harmonic component of the 
bottom perturbation 

δ =
̅̅̅̅̅̅̅̅̅̅̅
2ν/ω

√
thickness of the viscous bottom boundary layer 

ϵ dimensionless parameter much smaller than 1 
ηs free surface elevation 
η(x, y, t) bottom profile 
Γr and Γi real and imaginary parts of Γ. Γr determines the growth/ 

decay of the bottom forms and Γi determines their 
migration speed 

λr ripple wavelength 
μβ coefficient that determines the down-slope sediment 

transport rate 
ν kinematic viscosity of the water 
νT kinematic eddy viscosity 
ψ stream function such that ∂ψ

∂x = u and − ∂ψ
∂y = v 

ψd =
U2

0
(s− 1)gd sediment mobility number 

ρ,ρs densities of the water and of the sediment grains, 
respectively 

ηr height of the ripples 
(
τx, τy

)
horizontal components of the bottom shear stress 

τ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
τ2

x + τ2
y

√
bottom shear stress 

θ Shields parameter 
θcrit critical value of the Shields parameter for the inception of 

sediment transport 
ζ reference level to impose the bottom boundary condition 

for the sediment concentration 
ω = 2π

T angular frequency of the sea waves 
Ω vorticity 
O antisymmetric part of the velocity gradient tensor  
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shapes, lengths and heights which depend on the characteristics of both 
the surface waves and the steady currents which generate them. In the 
past, review papers appeared (Southard (1991), Blondeaux (2001)) 
describing the characteristics of the ripples appearing on the sea bottom. 
However, Southard (1991) describes the bed configurations generated 
by both steady and oscillatory flows and classifies them using different 
diagrams but on the basis of experimental measurements only. Blon
deaux (2001) considered all the bedforms which appear in the coastal 
area, i.e. tidal ridges, sand waves, sand ridged, shoreface-connected 
ridges, longshore bars, crescentic forms, welded bars, beach cusps, rip
ples, thus dedicating little space to the analysis of ripple characteristics. 

Let us point out that, since the manuscript was aimed at describing 
the predictive tools able to determine ripple characteristics as function 
of surface wave and sediment characteristics, we did not review the 
papers describing field measurements but we limit ourselves to use field 
data when strictly necessary to support the theoretical predictions. 

2. The mechanism of ripple formation 

Wave ripples are generated by steady recirculating cells that, in turn, 
are generated by the interaction of the oscillatory flow, induced by 
surface waves close to the bottom, with a bottom waviness of small 
amplitude. Indeed, a flat sea bottom is always characterized by the 
presence of small perturbations that can be considered as the super
position of different Fourier modes that, because of their small ampli
tude, affect the flow field independently of each other. 

The sinusoidal bottom waviness forces a periodic spatial variation of 
the oscillatory flow. Then, the flow field due the interaction of the 
oscillating flow with the wavy bottom gives rise to a steady velocity 
component. 

Fig. 1 shows an example of the flow visualizations of the steady ve
locity component made by Kaneko and Honji (1979). According to 
Kaneko and Honji (1979), if the ratio between the wavelength of the 
wall waviness and the thickness of oscillatory viscous wall layer (Stokes 
layer) is larger than about 26, the steady streaming has a double 
structure that consists of upper and lower pairs of recirculating cells. As 
the ratio between the amplitude of the wall waviness and the thickness 
of Stokes layer increases, the upper pair of recirculating cells squeezes in 
a gap between the lower pair just above the troughs of the wall. The 
shape and strength of the steady streamings depend on the parameters of 
the problem, namely, 1) the ratio hr/λr between the height hr and length 
λr of the bottom waviness, 2) the ratio U0/(ωλr) between the amplitude 
U0/ω of the fluid oscillations and λr (U0 and ω = 2π

T denote the amplitude 
and angular frequency of the velocity oscillations of the fluid particles, 
respectively), 3) the ratio between U0/ω and the viscous length δ =

̅̅̅̅̅̅̅̅̅̅̅
2ν/ω

√
which is the order of magnitude of the thickness of the bottom 

boundary layer. Note that U0/(ωδ) is equal to Rδ/2, Rδ = U0δ/ν being 
the Reynolds number characteristic of the bottom boundary layer. As the 
values of these parameters change, different balances take place into 
momentum equation among the local acceleration term, the convective 
acceleration term, the pressure gradient term and the viscous term and 
different approaches must be used to determine the flow field. (see 
among others Lyne (1971), Sleath (1984), Vittori (1989), Blondeaux 
(1990)). 

If the steady velocity component near to the bottom points from the 
troughs towards the crests of the bottom waviness and is strong enough 
to move the sediments, the sediment particles tend to move from the 
troughs towards the crests. The tendency of the sediment particles to pile 
up at the crests of the bottom waviness is opposed by the gravity force 
component acting in the down-slope direction that generates a down- 
slope sediment flux. Hence, the growth of the bottom waviness is 
controlled by a balance between these two opposite effects. When 
gravity prevails over drag, the amplitude of the waviness decays, 
otherwise the amplitude grows leading to the appearance of ripples. 
Once formed, the ripples do not continue to grow because the steady 
streaming is modified by nonlinear effects and, as the ripples get steeper, 
an equilibrium configuration is attained. 

3. Empirical formulae to predict the length and height of the 
ripples 

Since laboratory and field data are important to identify and classify 
the morphological patterns that are present in the coastal region, let us 
start by providing a brief overview of the actual knowledge of ripples 
that is available on the basis of laboratory and field data. 

As already pointed out, the geometry of sea ripples is often assumed 
to be two-dimensional and their profile to be similar to that of a wind 
wave, being characterized by crests and troughs (see the top panel of 
Fig. 2). However, the wavelength λr of the ripples is much smaller than 
the length of the wind waves, being of the order of magnitude of the 
amplitude of the fluid displacement oscillations induced close to the sea 
bottom by the wind waves, i.e. being of O(10 cm). Moreover, the ripples 
are only a few centimetres high. Similar values of the length and height 
of the ripples characterize also the three-dimensional ripples (see the 
bottom panel of Fig. 2). 

The prediction of the length and height of the sea ripples is quite 
important because the ripple geometry affects the local flow field and 
the sediment transport. When the ratio between the height and the 
length of the ripples is smaller than a threshold value that Sleath (1984) 
suggests to be about 0.1, the boundary layer generated close to the 
bottom by the no-slip condition keeps attached to the bottom profile and 
the sediments roll and slide along the bottom. Hence, these ripples are 
named ‘rolling-grain’ ripples. On the other hand, when the ratio be
tween the height and the length of the ripples becomes larger than 0.1, 
the flow separates from the crests of the bedforms and a vortex or more 
vortices are generated during each half cycle, being clockwise or 
counter-clockwise rotating depending on the direction of the free stream 
velocity. These vortices pick-up a lot of sediments from the bottom and 
later, when the flow reverses its direction, they are no longer reinforced 
and are simply convected by the free stream, dragging a lot of sediments 
along their trajectory. Later, the vortices decay because of viscous effects 
and the sediments settle down. In this case the ripples are named ‘vortex 
ripples’. 

For practical purposes, the ripple length and height are usually 
predicted by means of empirical formulae. It is reasonble to assume that 
the ripple geometry depends on i) the density ρ of the sea water, ii) the 
kinematic viscosity of the sea water, iii) the period T of the fluid oscil
lations induced by surface waves close to the bottom or, alternatively, 
the angular frequency ω = 2π/T, iv) the value U0 of the amplitude of the 
velocity oscillations (U0 = aω/sinh(kh), where k = 2π/L is the wave

Fig. 1. Visualization of the flow patterns observed by Kaneko and Honji (1979) 
for 1) the ratio between the wavelength of the wall waviness and the thickness δ 
(defined in the text) of the viscous oscillatory boundary layer equal to 24 and 2) 
the ratio between the height of the wall waviness and δ equal to 0.92 (adapted 
from Journal of Fluid Mechanics). 
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number of the sea wave, a is its amplitude and h is the local water 
depth), v) the size d of the sediments, vi) the density ρs of the sediments 
and vii) the gravity acceleration g. Then, a dimensional analysis shows 
that the wavelength and height of the ripples depend on four dimen
sionless parameters, i.e. the ratio s = ρs

ρ between the sediment and water 

densities, the ratio dδ between the size of the sediment and the thickness δ 
of the viscous bottom boundary layer, the sediment Reynolds number 

Rp =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(s− 1)gd3

√

ν and the flow Reynolds number Rδ = U0δ
ν . Of course, these 

parameters can be replaced by any combination of them and in the 

literature it is common to encounter the mobility number ψd =
U2

0
(s− 1)gd =

(
Rδ
Rp

d
δ

)2
, the sediment Froude number Fd = U0̅̅̅̅̅̅̅̅̅̅̅̅

(s− 1)gd
√ =

̅̅̅̅̅̅ψd
√ , the Rey

nolds number Rd of the sediment particle defined by Rd = U0d
ν = Rp

̅̅̅̅ψ√ , 

the Galilei number Ga =
(s− 1)gd3

ν2 = R2
p , the flow Reynolds number Re =

U2
0

νω =
R2

δ
2 and the parameter D* =

(
(s− 1)gd3

ν2

)
1
3 = R

2
3
p. 

These simple dimensional arguments show that ripple characteristics 
can not be predicted by means of just one paramenter. However, in the 
literature, the empirical formulae make use of only one parameter to 
make it simpler their use. Therefore, the first problem to be tackled is: 
which is the dimensionless parameter that mainly controls the 
geometrical characteristics of the ripples? 

The plethora of empirical formulae that use different parameters and 
the significant differences among the values they provide seem to sug
gest that the problem of predicting ripple characteristics is far from a 
widely accepted solution. Some of the predictors, which are commonly 
used, are described and discussed in Nelson et al. (2013). In the 

following we provide a summary of the actual knowledge. 

3.1. Ripple wavelength 

Looking at field and laboratory data, the wavelengths of the ripples 
generated by regular surface waves appear to be somewhat different 
from the wavelengths of the ripples generated by random sea waves. 
Notwithstanding this experimental evidence, Soulsby and Whitehouse 
(2005), Nelson et al. (2013) and other authors proposed a single pre
dictor for both regular and random waves. In particular, Soulsby and 
Whitehouse (2005) proposed to relate the ratio between the ripple 
wavelength λr and the amplitude U0/ω of the fluid displacement oscil
lations close to the bottom to the dimensionless parameter U0

ωd : 

λr

U0/ω =
1

a1 + b1
U0
ωd

[

1 − e
−

(

c1
U0
ωd

)d1
]

(1)  

where  

a1 = 1, b1 = 1.87× 10− 3, c1 = 2.0× 10− 4, d1 = 1.5 (2) 

Also Nelson et al. (2013) proposed to use (1) but the values of the 
constants they suggested are 

a1 = 0.72, b1 = 2.00× 10− 3, c1 = 1.57× 10− 4, d1 = 1.15
(3) 

Fig. 3 shows a comparison between the observed ripple wavelengths 
and the empirical predictors of Soulsby and Whitehouse (2005) and 
Nelson et al. (2013). 

In Fig. 3, the blue points are the wavelengths of the ripples generated 
by regular waves while the red points are the wavelengths of the ripples 
generated by random waves, the characteristics of which are determined 
using (1) and considering the significant wave height. Both data sets 
(regular waves and random waves) are extracted from the database 
collected by Nelson et al. (2013). The laboratory data obtained by means 
of an oscillating tray were not shown in Fig. 3 because Miller and Komar 
(1980) pointed out that the results obtained by oscillating the sediment 
bed are different from those obtained in water tunnels, wave channels 
and in the field. Moreover, not all the data of Nelson et al. (2013) are 
plotted in Fig. 3 because some of the data deviate significantly from the 
other data or refer to relic ripples, the characteristics of which can not be 
correlated to the actual hydrodynamic parameters. Notwithstanding this 

Fig. 2. Top panel: sand ripples on a beach near Sestroretsk, a suburb of Saint 
Petersburg, Russia, May 19, 2011. Bottom panel: rippled texture of a sandy bar 
at low tide along French Beach, Qatar, March 4, 2010 (courtesy of 
Alexey Sergeev). 

101 102 103 104 105

U
0
/(  d)

10-2

10-1

100

101

r /(
U

0
/

)

regular waves
irregular waves
Nelson et al.(2013)
Soulby& Whitehouse (2005)

Fig. 3. Comparison between predicted (lines) and observed (points) ripple 
wavelengths. The experimental data are some of those collected by Nelson 
et al. (2013). 
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selection of the data, there is a small group of data that deviates from the 
trend of the empirical predictors. 

On the basis of experimental data, Inman (1957) suggested that the 
ripple wavelength depends on the ratio 2U0

ω but it has different behav
iours. The wavelength of the bedforms is proportional to the ratio 2U0

ω up 
to a threshold value whereupon some of the data show that the ripple 
wavelength keeps increasing with 2U0

ω but other data indicate that 
eventually the wavelength of the ripples attains a constant value. 

Later, Clifton (1987) divided the ripples into three groups: orbital, 
anorbital and suborbital ripples. Orbital ripples have a wavelength that 
is proportional to the amplitude of the fluid displacement oscillations 
close to the bottom 

λr ≃ 0.65
2U0

ω (4) 

Anorbital ripples, which appear for large values of the ratio 2U0/ω
d , 

have a wavelength which is almost independent of 2U0
ω and is propor

tional to the grain size, ranging between 400d and 600d (the large 
scatter of the data does not allow to give a more precise value).More
over, suborbital ripples exist too and their wavelength depends on both 
2U0/ω and the grain size d. 

To show these different behaviours of the ripple wavelength, the top 
panel of Fig. 4 shows the ratio λr/d plotted versus the dimensionless 
parameter (2U0/ω)/d. Because, during the revision process, one 
reviewer pointed out that the use of dimensionless variables might 
obscure the genuine scatter of the observed values of the ripple wave
length, the bottom panel shows the wavelength of the ripples plotted 

versus twice the amplitude of the fluid displacement oscillations using 
dimensional variables. 

Nielsen (1981) proposed to predict the wavelength of the ripples by 
using the sediment mobility number ψd and he suggested to use 

λr

U0/ω = exp
(

693 − 0.37ln8ψd

1000 + 0.75ln7ψd

)

(5)  

to predict the wavelength of the ripples observed in the field and 

λr

U0/ω = 2.2 − 0.345ψ0.34
d (6)  

to predict the wavelength of the ripples generated by a regular oscilla
tory flow. Fig. 5 shows the relationships (5) and (6) along with the 
measured ripple wavelength. 

3.1.1. Ripple height 
If the wavelength λr of the ripples is known, their height hr can be 

obtained by means of the empirical formulae that provide the ripple 
steepness hr/λr. Soulsby and Whitehouse (2005) suggest to use the 
following formula 

hr

λr
= 0.15

{

1 − exp

[

−

(
5.0 × 103d
(U0/ω)

)3.5 ]}

(7)  

that predicts the ripple steepness hr/λr as function of the ratio U0/ω
d . 

Nelson et al. (2013) suggest to predict the ripple steepness as func
tion of the ripple wavelength according to the formula hr

λr
= 0.12λ− 0.056

r 

where λr should be in metres. The disavantage of Nelson et al.’s formula 
is that the ratio hr/λr is given as function of a dimensional quantity. 
Fig. 6 shows a comparison between the results provided by (7) and the 
experimental measurements for both regular and and irregular waves. 

3.1.2. Ripple symmetry index 
The ripple profile is not symmetric with respect to its crests because a 

small degree of asymmetry is generated by both the weak steady velocity 
component, which is present under propagating sea wave (Longuet- 
Higgins (1953)), and by the difference between the forward velocity 
generated by the passage of the crests of the surface waves and the 
backward velocity generated by the passage of the troughs. Of course the 
asymmetry increases when a steady current is present. 

The symmetry index is usually defined as the ratio of the length l2 of 

Fig. 4. Comparison between predicted (lines) and observed (points) ripple 
wavelengths. The experimental data are some of those collected by Nelson et al. 
(2013). In the top panel both the ripple wavelength and the amplitude of the 
fluid displacement oscillations are made dimensionless using the grain size d 
whereas in the bottom panel the dimensional values are used. 

Fig. 5. Comparison between predicted (lines) and observed (points) ripple 
wavelengths. The experimental data are some of those collected by Nelson 
et al. (2013). 
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the gentle (up-current) side to the length l1 of the steep (down-current) 
side of the bottom forms. The experimental values of l2l1 

are plotted versus 
the strength of the steady current in Fig. 7 by considering the data of 
Inman (1957), Tanner (1971), Harms (1969), Tietze (1979), Inman and 
Bowen (1962) and Blondeaux et al. (2000). In the figure, when surface 
waves are considered, the steady velocity component us is evaluated by 
means of the theory of Longuet-Higgins (1953), i.e. us = 3πa2ω

2Lsinh(2πh/L) . As 
expected, the results suggest that ripples tend to become more asym
metric as the mass transport velocity increases but with an asymptote for 
l2
l1 

equal to about 2.5. 

4. Idealized models of ripple appearance and dynamics 

4.1. The appearance of rolling-grain ripples for moderate values of the 
Reynolds number 

The mechanism that originates wave ripples is qualitatively under
stood since Sleath (1976) studied the oscillatory flow over a wavy wall 
and showed that a small bottom waviness interacting with an oscillatory 
flow induces a steady streaming that is superimposed on the basic 
oscillatory fluid motion and consists of recirculating cells the charac
teristics (form, intensity and direction) of which depend on the 

characteristics of the oscillatory flow and those of the wall waviness. 
As pointed out in Section 2, when the steady velocity component 

close to the bottom is directed from the troughs towards the crests of the 
initial bottom waviness and is strong enough to drag the sediments, the 
sediments tend to move from the troughs towards the crests. The ten
dency of sediments to pile up near the crests is opposed by the compo
nent of the gravity force acting along the down-slope direction. Hence, 
the time development of the amplitude of the bottom waviness is 
controlled by a balance between these two effects. If gravity prevails 
over drag, the amplitude decays. On the other hand, if drag prevails on 
gravity, the amplitude grows leading to the appearance of ripples. Once 
formed, ripples do not continue to grow indefinitely because the steady 
streaming is modified by the nonlinear effects due to the interaction of 
the perturbation (induced by the bottom waviness) with itself. This self- 
induced interaction, which takes place because of the nonlinear 
convective terms of momentum equation, is not taken into account by a 
linear approach because the assumption of a small (strictly infinitesimal) 
amplitude of the perturbation leads to neglect nonlinear effects. Then, as 
ripples get steeper because their amplitude grows, an equilibrium 
configuration is attained which is controlled by nonlinear effects. 

Sleath (1976) investigated the phenomenon by analytical means and 
considered two limiting cases, i.e. amplitudes of the fluid displacement 
oscillations either much larger or much smaller than the wavelength of 
the bottom waviness. Blondeaux (1990) determined the time develop
ment of a bottom waviness when the fluid displacement oscillations are 
of the same order of magnitude as the wavelength of the bottom wavi
ness, as it is observed in the field. 

In particular Blondeaux (1990) considered a two-dimensional wavy 
bottom described by 

y = η(x, t) = ϵA(t)eiαx + c.c. (8)  

where the wavenumber α of the bottom waviness is related to λr by α =

2π
λr 

and (x, y) is a fixed coordinate system with the x-axis coincident with 
the averaged bottom and aligned with the fluid oscillations and the 
y-axis is orthogonal to the bottom and points upwards. 

Blondeaux (1990) considered the flow generated close to the bottom 
by a monochromatic surface wave for moderate values of the Reynolds 
number, such that the flow regime is laminar. When the bottom is flat, 
the flow is described by the well known Stokes’ solution and far from the 
bottom, the fluid velocity oscillates with an amplitude U0. 

Then, it is useful to introduce a reference frame (x̃, ỹ) moving with 
the fluid far from the bottom, such that x̃ = x + U0

2
∫ t

0
(
eiωt + c.c.

)
dt and 

ỹ = y. Since the flow is two-dimensional, it is possible to introduce the 

stream function ψ̃ , such that (ũ, ṽ) =
(

∂ψ̃
∂̃y
, −

∂ψ̃
∂̃x

)
. Considering a bottom 

waviness of small amplitude (ϵ≪1), it is possible to expand the stream 
function in the form 

ψ̃ = ψ̃0 + ϵA(t)
[
ψ̃1eiαx̃ + c.c.

]
+O

(
ϵ2) (9) 

The equation that provides the spanwise component of the vorticity, 

which is equal to −
(

∂2 ψ̃
∂̃x

2 +
∂2 ψ̃
∂̃y

2

)
, can be easily obtained by cross- 

differentiating the momentum equations along the x̃- and ỹ-axes. By 
substituting (9) into vorticity equation, at order ϵ, it is easy to obtain 

∂
∂t
(
N2ψ̃1

)
+

∂ψ̃0

∂ỹ
N2ψ̃1 −

∂3ψ̃0

∂ỹ3 ψ̃1 = νN2( N2ψ̃1
)

(10)  

where N2 = ∂2

∂̃y
2 − α2. In (10) the term proportional to dA/dt is neglected 

because it describes the changes of A that take place on the morpho
dynamic temporal scale that is much longer than the wave period. 
Lastly, the no-slip condition at the bottom and the matching of the so
lution with the vanishing velocity far from the bottom close the problem. 

Blondeaux (1990) determined the flow field by writing the solution 

Fig. 6. Comparison between predicted (line) and observed (points) ripple 
steepnesses. The experimental data are some of those collected by Nelson 
et al. (2013). 

Fig. 7. Symmetry index, i.e. ratio between the length l2 of the up-current side 
to the length l1 of the down-current side of the ripples, plotted versus us/U0 (us 

being the steady velocity component just outside the bottom boundary layer). 
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of (10) in the form 

ψ̃1 =
∑∞

m=− ∞
Gm(ỹ)eimωt (11)  

and obtaining the functions Gm as a double series of exponential func
tions of y (details of the solution procedure can be found in Blondeaux 
(1990)). The unavoidable presence in (11) of the term G0(ỹ) shows that a 
steady streaming is generated by the interaction of the oscillatory flow 
with the bottom waviness. Fig. 8 shows examples of the streamlines 
related to the steady streaming generated by the fluid oscillations over a 
wavy wall of small amplitude, the wavelength of which is about 15δ for 
panel a and about 40δ for panel b. The results clearly show that 2 or 4 
recirculating cells appear depending on the parameters of the hydro
dynamic problem (Vittori (1989)). 

Once the flow field is obtained, the time development of the wavi
ness of the bottom can be determined by considering sediment conti
nuity equation (Exner equation) 

∂η
∂t

= −
1

(1 − por)

∂Qx

∂x
(12)  

and by introducing a sediment transport predictor to evaluate the 
sediment transport rate Qx per unit width (in (12) por denotes the bottom 
porosity). Since the flow is assumed to be laminar, the empirical 
formulae, commonly used, do not provide reliable estimates of the 
amount of sediment moved by the flow, because they are designed to 
quantify the sediment transport rate when the flow regime is turbulent 
and the sediment dynamics is largely affected by the turbulent eddies. 
Hence, Blondeaux (1990) used a modified version of the formula pro
posed by Grass and Ayoub (1982). A term proportional to the local 
bottom slope was introduced by Blondeaux (1990) into the sediment 
transport predictor to take into account the effects that the bottom slope 
has on the sediment transport rate. 

Sediment continuity Eq. (12) leads to an equation which can be 
written in the form 

dA
d(ωt)

= Γ(ωt)A(ωt) (13)  

where the function Γ(ωt), which turns out to be complex (Γ = Γr + iΓi), 
depends on the oscillatory flow over the wavy bottom or, in other words, 
on the solution of (10) and on the sediment transport rate at the same 
order of approximation (see Blondeaux (1990)). The solution of Eq. (13) 

reads A(ωt) = A0e
∫

Γ(ωt)d(ωt)
= A0e(Γr+iΓi)ωte

∫
[(Γr − Γr)+i(Γi − Γi) ]d(ωt) where the 

time average Γr of Γr describes the growth/decay of the bottom wavi
ness, depending on its positive/negative value, and the time average Γi 
of Γi is related to the migration speed of the bottom forms. Because of the 
symmetry of the problem, Γi and the average migration speed vanish. 
The periodic parts of Γ, characterized by a vanishing time average 
(namely Γr − Γr and Γi − Γi), turn out to be small and describe the 
vertical and horizontal small oscillations of the bottom profile taking 
place during the wave cycle. 

Two contributions to Γr can be indentified. One contribution turns 
out to be positive (destabilizing) and is due to the sediments moving 
from the troughs towards the crests of the bottom waviness driven by the 
steady streamings. The second contribution, which is due to the bottom 
slope, is negative and has a stabilizing effect, since it is due to the sed
iments that move from the crests towards the troughs of the bottom 
waviness because of gravity effects. Therefore, the behaviour of the 
bottom waviness is controlled by a balance between these two effects. 
Fig. 9 shows Γr as function of α for different values of ψd and for fixed 
values of the other flow and sediment parameters. Looking at Fig. 9, it 
appears that a critical value ψd,crit of the mobility number ψd exists such 
that for values of ψd larger than the critical value, perturbation com
ponents characterized by wavenumbers falling within a restricted range 
around a critical wavenumber αcrit grow exponentially in time. A larger 
value of ψd leads to an increase of the range of unstable wavenumbers 
(wavenumbers with a positive growth rate) while a decrease of ψd makes 
the unstable wavenumbers to collapse around αcrit. A change of the pa
rameters of the problem leads to quantitative changes of the results but 
no qualitative change is observed. If the critical values of α are plotted 
versus Rδ for different values of Rd, it can be observed that coarser 
sediments, which are characterized by higher values of Rd, give rise to 
longer ripples. Fig. 10 shows αcrit as function of Rδ for different values of 
Rd, along with the experimental measurements of Blondeaux et al. 
(1988). The comparison between the theoretical values and the 

Fig. 8. Streamlines of the steady streaming at order ϵ of the viscous oscillatory flow over a wavy wall plotted in the plane (x, y) (right panel: α = 0.4,Rδ = 0.1; left 
panel: α = 0.15,Rδ = 0.1) (data from Blondeaux (1990)). 
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experimental measurements shows that the analysis provides fair pre
dictions even though it underpredicts the observed wavelengths. The 
large variations of αcrit as function of Rδ for a fixed value of Rd (see 
Fig. 10) might be caused by changes of the ratio rr between the ampli
tude of the sediment displacement oscillations and the ripple wave
length λr. During a wave period, a sediment particle is subject to the 
action of a different number of steady recirculating cells depending on 
the ratio (U0/ω)

λr 
between the amplitude of the fluid displacement oscil

lations and the ripple wavelength. 
A further comparison between experimental observations and theo

retical values is shown in Fig. 11, where the experimental and theoret
ical values of the ratio between the amplitude of fluid oscillations and 
the wavelength of ripples are plotted versus the parameter ρd

(ρs − ρ)gT2, 

which was suggested by Sleath, 1984 to control the ripple wavelength. 
The regions of existence of ripples and flat beds, as predicted by the 

stability analysis, are shown in Fig. 12 along with the experimental 
observations of Blondeaux et al. (1988) for a particular set of values of 
the parameters. Notwithstanding the quantitative differences between 
the theoretical results and the experimental data mainly due to the in
accuracy of the sediment transport predictor, the stability analysis ap
pears to provide a fair description of the process which leads to ripple 
formation. 

4.2. The appearance of vortex ripples for moderate values of Rδ 

The approach of Blondeaux (1990) considers a bottom waviness of 
small amplitude and neglects nonlinear effects. Hence, it cannot follow 
the time development of the bottom forms for long times and it cannot 
determine their equilibrium amplitude. This last information is quite 
important, since it is known that, for large amplitudes of the bottom 
forms, the flow separates from their crests and vortices are generated 
that increase energy dissipation and sediment transport. An attempt to 
determine the temporal growth of the ripples for long times and to 
predict the equilibrium amplitude of the bottom forms was made by 
Vittori and Blondeaux (1990), who extended the analysis of Blondeaux 
(1990) taking into account weak nonlinear effects. To consider weak 
nonlinear effects, the value of the sediment Froude number is assumed 
to be close to the critical value above which ripples form, i.e. 

Fd = Fd,crit + ϵFd1 (14)  

and the perturbation is considered to be such that its wavenumber α is 
provided by 

α = αcrit + ϵα1 with ϵ≪1 (15) 
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In other words, only unstable components with wavelengths slightly 
different from the critical value are considered. 

To be rigorous, it would appear necessary to consider the time 
development of a narrow spectrum of unstable modes around the critical 
wavenumber αcrit. This would imply to consider the time development of 
a mode characterized by a wavenumber αcrit and an amplitude A which 
depends not only on a slow temporal scale proportional to ϵωt, as 
described in the following, but also on the slow spatial scale ϵ1/2x/δ. 
Such an analysis leads to a Ginzburg-Landau equation for the amplitude 
A. However, because of the symmetry of the problem, Γi, i.e. the 
migration speed of the bottom forms, as well as their group velocity 
vanish. Hence, the coefficients of the Ginzburg-Landau equation would 
be real. Therefore, close to the critical conditions, the time development 
of any initial perturbation leads to the appearance of a so-called Stokes 
wave, i.e. a monochromatic bottom profile characterized by a wave
number close to αcrit (see, a.o. Schielen (1995)). 

To solve the problem, Vittori and Blondeaux (1990) used a multiple 
scale approach (Nayfeh (2011)) and introduced a slow time scale τ =

ϵQωt that describes the growth of the ripples. The time variable τ turns 
out to be much slower then t for two reasons. First, the morphodynamics 
changes take place on a slow time scale because the parameter Q, which 
is defined in Vittori and Blondeaux (1990) and depends on the charac
teristics of the sediment grains, turns out to be much smaller than one. 
Then, as it happens in all the weakly nonlinear stability analyses, τ∝ϵt 
because of (14). Indeed, because of the assumptions (14) and (15), the 
growth rate of the bottom perturbation is expected to be of order ϵ. 
Using a multiple scale approach, the time derivatives can be transformed 
according to 

∂
∂t

→
∂
∂t
+ ϵQω ∂

∂τ 
Then, it is necessary to obtain the unknown order of magnitude of 

both the bottom perturbation and the stream-function. The nonlinearity 
of the momentum equation gives rise to the interaction of the funda
mental component of the bottom perturbation with the basic flow and to 
its self-interaction. As in the linear analysis, the former interaction 
makes the perturbed flow to have all the temporal harmonics compo
nents. By analysing in details the interaction process, it can be verified 
that the fundamental spatial harmonic component is reproduced at the 
third order of approximation and it would generate secular terms which 
produce a secular growth. The generation of secular terms can be 
supressed, only by the slow time dependence of the amplitude of the 
fundamental component that produces a contribution to the third order 
of approximation. This implies that the amplitude of the bottom 
perturbation be of order ϵ1/2. The arguments above suggest that the 
stream function should be expanded in the form  

ψ = ψ0 + ϵ1
2
[
A(τ)C1(t)ψ1(y , t

)
eiαx + c.c.

]
+ ϵ

[
A(τ)A*(τ)C1(t)C*

1(t)ψ20
(
y , t)

+A2(τ)
(

C2
1(t)ψ

(1)
22

(
y , t

)
+C22(t)ψ (2)

22

(
y , t)

)
e2iαx + c.c.

]

+ ϵ3
2

[
A2(τ)A*(τ)

(
C2

1(t)C
*
1(t)ψ

(1)
31

(
y , t

)
+C31(t)ψ (2)

31

(
y , t)

)
eiαx + c.c.

]

+O
(

ϵ
3
2e3iα

)

(16)  

and the bottom profile turns out to be 

η = ϵ1
2
[
A(τ)C1(t)eiαx + c.c.

]
+ ϵ

[
A2(τ)C22(t)e2iαx + c.c.

]

+ ϵ3
2
[
A2(τ)A*(τ)C31(t)eiαx + c.c.

]
+O

(
ϵ3

2e3iα
) (17)  

where A(τ) describes the time development of the amplitude of the 
bottom perturbation (averaged over the wave cycle), whereas Ci and Cij 

describe the small periodic changes of the bottom profile taking place 
during the wave cycle. Moreover, A*,C*

1 denote the complex conjugates 
of A and C1, respectively. As pointed out by Vittori and Blondeaux 

(1990), different contributions can be recognized in (16). The first term 
ψ0 of the expansion (16) describes the basic Stokes flow within the 
bottom boundary layer over a flat bottom. The term of order ϵ1

2 describes 
the flow due to the interaction of the oscillatory basic flow with the 
wavy bottom profile. At order ϵ there are three terms. The first two 
terms, which are proportional to C2

1 and C1C*
1, originate because of the 

nonlinearity of momentum equation. The third term is due to a bottom 
waviness characterized by an amplitude ϵC22 and a wavenumber 2α. At 
order ϵ3

2, the term that we are interested in is the term proportional to 
C2

1C*
1eiαx, since it reproduces the spatial periodicity of the original 

perturbation and might cause the secular growth of the perturbation. 
The problems which provide ψ ij are long and tedious to be obtained 

but their derivation is straightforward. The solutions of these problems 
can be found with a procedure which assumes ψ =

∑∞
m=− ∞G(m)

ij (ỹ)eimωt. 

Systems of coupled ordinary differential equations for G(m)

ij (ỹ) are ob
tained, which can be solved by means of a standard Runge-Kutta method 
of forth-order and a shooting procedure (Vittori (1989)). Once the 
stream functions at the different order of approximation are determined, 
sediment continuity equation provides the values of Cij(t). 

Sediment continuity equation at order ϵ1
2 suggests that C1 is a peri

odic function of t of O(Q). Considering the terms of O(ϵ) of sediment 
continuity equation, in order to avoid the secular growth of the 
perturbation, it is necessary to force a condition that provides the 
amplitude C22 of the second harmonic of the bottom waviness and shows 
that the profile of the ripples is characterized by crests that are sharper 
than the troughs. Similarly, considering the terms of sediment continuity 

equation of O
(

ϵ3
2

)
, to avoid the secular growth of the perturbation, it is 

necessary to force the following amplitude equation 

dA(τ)
dτ = a1A(τ)+ a2A2(τ)A*(τ) (18)  

where a1 and a2 are coefficients that depend on the hydrodynamic and 
morphodynamic parameters. The amplitude Eq. (18) is of Landau-Stuart 
type and it can be integrated to obtain the time development of the 
amplitude of the bottom perturbation 

∣A(τ)∣ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Real(a1)

exp[ − 2Real(a1)τ ] − Real(a2)

√

(19) 

If nonlinear effects are neglected (i.e. a2 is set equal to zero), the 
exponential growth/decay of the bottom perturbation, obtained by 
means of the linear stability analysis, is recovered. 

When a1 is positive and |A|3 is not negligible with respect to ∣A∣, 
nonlinear effects modify the exponential growth of the perturbation and 
the amplitude might attain the finite equilibrium value ∣Ae∣ 

∣Ae∣ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

−
Real(a1)

Real(a2)

√

(20) 

Of course Real(a2) should be negative. If the values of the parameters 
are such that Real(a2) is positive, no equilibrium exists and the pertur
bation grows till nonlinear effects become so strong that the weakly 
nonlinear approach fails. In this case vortex ripples are expected to 
appear and the strong nonlinear effects generated by the boundary layer 
separation allow an equilibrium to be attained. 

Vittori and Blondeaux (1990) showed that the plane (Rδ,ψd) can be 
divided into three regions, the boundaries of which depend on the values 
of the parameters. A first region is identified by values of ψd smaller than 
ψd,crit. In such a region the flat bottom is stable and ripples are not ex
pected to appear. On the other hand, for ψd larger than ψd,crit , the 
analysis predicts the formation of ripples. In the sub-region such that 
Real(a2) is negative and the ratio between the predicted height of the 
ripples and the predicted length turns out to be smaller than about 0.1, 
which is the limiting value for flow separation at the ripple crests (Sleath 
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(1984)), the analysis predicts the appearance of rolling grain ripples as 
equilibrium bedforms. In the sub-region such that Real(a2) is negative 
but the ratio between the predicted height of the ripples and the pre
dicted wavelength turns out to be larger than about 0.1 or in the sub- 
region such that Real(a2) is positive, the weakly nonlinear analysis 
shows that no equilibrium is possible assuming that nonlinear effects are 
weak. In this case the amplitude of the bottom forms tends to grow till 
the boundary layer separates from the ripple crests and vortex ripples 
are generated. 

A comparison between the theoretical predictions and the experi
mental observations of Blondeaux et al. (1988) and Horikawa and 
Watanabe (1968) is shown in Figs. 13 and 14, respectively. If rolling 
grain ripples are the equilibrium bottom forms predicted by the weakly 
nonlinear stability analysis, it is also possible to predict the amplitude of 
the ripples. Fig. 15 shows a comparison between the predicted values of 
the ratio between ripple height and δ and the values measured by 
Blondeaux et al. (1988). The qualitative agreement is satisfactory taking 
into account that the empirical formulae, which can be found in the 
literature to predict the sediment transport rate, often provide its order 
of magnitude but not an accurate quantitative value (see a.o. fig. 2.3.2 of 
Nielsen (1992)). 

At this stage, it is worth pointing out that the presence of isolated 
disturbances of large amplitude can modify the mechanism of ripple 
appearance previously described. The growth of ripples from isolated 
disturbances of the bottom has not been investigated by means of sta
bility analyses so far. The study of a possible mechanism leading to the 
formation of periodic bedforms from an isolated disturbance was carried 
out by Roos et al. (2005) by considering the large scale bedforms (sand 
waves) generated by tidal currents. The mechanism outlined by Roos 
et al. (2005), even though acting on a different spatial scale, provides a 
possible explanation of the morphological patterns shown by Figs. 16 
and 17 that were observed by Taylor Perron and Jaap Nienhuis (2018, 
private communication) during a laboratory experiment made in a wave 
channel. In the experiments, surface waves propagating over a water 
depth of 40 cm and characterized by a period of 2.6 s and a height of 6.4 
cm modelled the bottom of the wave flume and caused the appearance of 
ripples that started at a particular location and then spread all over the 
flume bottom. A further investigation of ripples appearance triggered by 
an isolated disturbance was made by Sekiguchi and Sunamura (2004), 
who investigated the appearance of ripples by considering an initial flat 
bed with and without a localized large amplitude perturbation and 
observed that, when the mobility number ψd is larger that 2.5, ripples 
start from the localized perturbation and pervade the whole sediment 
bed. 4.3. The appearance of brick-pattern and tile ripples for moderate values 

of Rδ 

Even though the ripple profile is often two-dimensional, other ripple 
shapes are observed depending on sediment and flow characteristics. 
For example, Fig. 18 shows a photo of the brick-pattern ripples observed 
by Sleath (1984) during a laboratory experiment. The main crests of the 
brick pattern ripples are perpendicular to the direction of the fluid os
cillations, as for two-dimensional ripples, but these crests are joined by 
equally spaced sand bridges of small amplitude which are parallel to the 
direction of the fluid oscillations and shifted, between adjacent se
quences, in the transverse direction by half the transverse wavelength. 
Hence, the bottom topography resembles a wall of bricks. Other three- 
dimensional ripples do exist and photos can be found in the books of 
Sleath (1984) and Allen (1982) (see also Fig. 19). 

A possible mechanism able to trigger the formation of brick-pattern 
ripples was first described by Hara and Mei (1990a) and Hara and Mei 
(1990b), who considered the stability of the Stokes boundary layer over 
a wavy wall and investigated the time development of spanwise per
turbations of this two-dimensional basic flow field. Hara and Mei 
(1990a, 1990b) showed that the growth of the flow perturbations might 
lead to a three-dimensional flow which is periodic with either a wave
length equal to that of the two-dimensional bottom waviness or a 

Fig. 13. Regions in the (Rδ,ψd)-plane where a flat bed, rolling-grain ripples (r. 
g. ripples), vortex ripples are expected to appear. Comparison between the 
theoretical predictions (Rd = 10, s = 2.65) and the laboratory observations 
(5 < Rd < 10) of Blondeaux et al. (1988). 

Fig. 14. Regions in the (Rδ,ψd)-plane where a flat bed, rolling-grain ripples (r. 
g. ripples), vortex ripples are expected to appear. Comparison between the 
theoretical predictions (Rd = 40, s = 2.65) and the laboratory observations 
(30 < Rd < 50) of Horikawa and Watanabe (1968). 

Fig. 15. Comparison between theoretical and experimental values of the height 
hr of rolling-grain ripples (experimental data of Blondeaux et al. (1988)). The 
two straight lines indicate an error of the theoretical predictions equal to 50%. 
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wavelength which is twice the previous one, depending on the values of 
the parameters. Hence, the steady velocity component, which is origi
nated by the growth of the perturbation, tends to accumulate the sand in 
various patterns. One of these patterns suggests the initiation of brick- 
pattern ripples. Later Vittori and Blondeaux (1992) explained the for
mation of brick-pattern ripples by developing a weakly nonlinear sta
bility analysis of a sandy bottom subject to an oscillatory flow. The 

analysis of Vittori and Blondeaux (1992) considers three-dimensional 
perturbations of the bottom profile and shows that brick-pattern rip
ples can be originated by the simultaneous growth of two-dimensional 
and three-dimensional perturbations of the sea bottom that interact 
with a mechanism similar to that described by Craik (1971) in a different 
context. The analysis of Vittori and Blondeaux (1992) considers the 

Fig. 16. The time development of an isolated bottom bump subject to a propagating wave which leads to the appearance of a rippled bed. The first panel (the panel 
on the top-left of the figure) shows the initial bottom configuration and the other panels show bottom configurations which are 260 s apart (plotted counter- 
clockwise) (courtesy of Taylor Perron). The characteristics of the surface wave are give in the text. 

Fig. 17. The time development of an isolated bottom bump subject to a propagating wave which leads to the appearance of a rippled bed. The first panel shows the 
bottom configuration at 2600 s from the beginning of the experiment and the other panels are 2600 s apart (courtesy of Taylor Perron). The characteristics of the 
surface wave are give in the text. 

Fig. 18. Brick-pattern ripples observed during a laboratory experiment (cour
tesy of John F.A. Sleath). Fig. 19. Three-dimensional vortex ripples observed during a laboratory 

experiment (courtesy of John F.A. Sleath). 
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Stokes boundary layer over a flat bottom as basic flow. Then, Vittori and 
Blondeaux (1992) argued that the critical value of the mobility number 
for the growth of two-dimensional perturbations (Fd)c2 is close to that 
which leads to the instability of three-dimensional perturbations (Fd)c3. 
Then, Vittori and Blondeaux (1990) assumed 

Fd = (Fd)c2 + ϵk2 = (Fd)c3 + ϵk3 (21)  

and considered the following three components of a bottom perturba
tion, which are shown to strongly interact 

y = ϵ
[
A1(τ)C1(t)eiβx +A2(τ)C2(t)ei(αx+γz) +A3(τ)C3(t)ei(αx− γz) + c.c.

]
+O

(
ϵ2)

(22) 

The reader should be aware that (21) implies that the mobility 
number ψd is close to its critical values (ψd)c2 and (ψd)c3 since (21) can be 
written as ̅̅̅̅̅̅ψd

√
=

̅̅̅̅̅̅̅̅̅̅̅̅̅
(ψd)c2

√
+ ϵk2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅
(ψd)c3

√
+ ϵk3. Since the values of the 

parameters are close to the critical ones, the amplitude of the pertur
bations grows on the slow time scale τ that is proportional to ϵ because of 
(21). On the other hand C1(t),C2(t),C3(t) describe the periodic oscilla
tions of the bottom profile which take place during the wave cycle. The 
flow field, as well as the other variables, are expanded in a similar way as 
(22). Because of (21), the functions Ai neither grow nor decay because 
the value of the sediment Froude number at this order of approximation 
concides with the critical value for the growth of the bottom perturba
tions. Hence, the functions Ci keep constant but for small periodic os
cillations of the bottom profile during the wave cycle, which are of order 
ϵQ and have a vanishing average. 

The analysis of Vittori and Blondeaux (1992) shows that at O
(
ϵ2), if 

β = α/2, the interaction of the three components of the bottom 
perturbation would induce a secular growth of their amplitudes, unless 
the following solvability conditions are forced  

dA1

dτ = a1A1 + b1A2A3;
dA2

dτ = a2A2 + b2A1A*
3;

dA3

dτ = a3A3 + b3A1A*
2

(23)  

where ai, bi are real constants that depend on the parameters of the 
problem. Moreover, the symmetries of the problem force a2 = a3, b2 =

b3 and suggest to assume A2 = − A3. 
The behaviour of Ai depends, beside the parameters of the problem, 

on the initial values Ai(0), which in the following are assumed to be 
small. The values of ai depend on how far the actual values of the pa
rameters are from the critical values. Moreover, for assigned values of 
the parameters, bi depend on γ, i.e. the wavenumber of the perturbation 
in the spanwise direction. 

To illustrate the results of the analysis, let us follow Vittori and 
Blondeaux (1992) and consider values of Fd larger than the critical value 
(Fd)c2 of the sediment Froude number for the growth of two-dimensional 
disturbances but smaller than the critical value (Fd)c3 that leads to the 
growth of three-dimensional disturbances that is assumed to be larger 
than the former. In this case, the linear analysis would predict the 
growth of two-dimensional ripples only. However, the numerical inte
gration of (23) shows that two different behaviour of Ai can be observed 
depending on the values of the other parameters. In some cases (see 
Fig. 20), only A1 grows while A2 and A3 decay and thus the analysis 
predicts the appearance of two-dimensional ripples. In these cases 
nonlinear effects are too weak to modify the time development of the sea 
bed predicted by the linear stability analysis. However, values of the 
parameters do exist such that all the three components of the bottom 
perturbation grow (see Fig. 21) and a bottom configuration similar to 
that of brick-pattern ripples tends to appear (see Fig. 21). 

Figs. 20 and 21 show the behaviour of Ai for values of the parameters 
chosen to reproduce the experiments number 76 and 49 of Sleath and 
Ellis (1978). In the former case only the two-dimensional component of 
the perturbation grows whereas in the latter case also the three- 
dimensional components grow. In other words the weakly nonlinear 

stability analysis, accordingly with Sleath and Ellis (1978) observations, 
predicts the appearance of two-dimensional ripples during experiment 
number 76 and three-dimensional ripples similar to brick pattern ripples 
during experiment number 49. 

The numerical integration of (23) for different values of the param
eters along with the results obtained by Blondeaux (1990) and Vittori 
and Blondeaux (1990) shows that the parameter space can be divided 
into four different regions where the stability analysis predicts (i) a 
stable flat bed, (ii) the appearance of rolling-grain ripples, (iii) the 
appearance of vortex ripples, (iv) the appearance of brick-patterns rip
ples. Fig. 22 shows an example of the results along with the experimental 
results of Sleath and Ellis (1978) and Horikawa and Watanabe (1968). 
Of course, when the analysis predicts the appearance of brick-pattern 
ripples, the trasverse wavelength of the bottom forms can be pre
dicted, too. In Fig. 23, the experimental values of the transverse wave
number γ measured by Sleath and Ellis (1978) are plotted along with the 
theoretical predictions. 

To conclude this section, let us point out that Mei and Liu (1993) and 
Blondeaux and Vittori (1999) pointed out that values of the parameters 
might exist such that the length and time scales characteristic of the flow 
instability mechanism described by Hara and Mei (1990a) become 
comparable with those found by analysing the stability of the bottom 
and the two mechanisms may interact giving rise to a complex bottom 

Fig. 20. Time development of the amplitude Ai (i = 1,2, 3) for Rd = 30,Rδ =

50, Fd = 2.15, γ = 0.14, ϵ = 0.1,
(
s = 2.65, μβ = 0.15

)
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Fig. 21. Time development of the amplitudes Ai(i = 1, 2,3) for Rd = 30,Rδ =

68, Fd = 2.15, γ = 0.14, ϵ = 0.1,
(
s = 2.65, μβ = 0.15

)
. 
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morphology. 
Roos and Blondeaux (2001) performed a study similar to that of 

Vittori and Blondeaux (1992) but considered a forcing flow generated by 
the simultaneous presence of two surface waves characterized by the 
same angular frequency but different amplitudes and directions of 
propagation. Such a wavefield can be observed when a wave is partially 
reflected by a coastal structure. In this case, close to the bottom, the 
irrotational flow is not unidirectional but characterized by an elliptical 
behaviour. The results by Roos and Blondeaux (2001) indicate the 
possible formation of hexagonal ripples, also named tile ripples. A photo 
of such ripples can be found in Allen (1982). 

4.4. The appearance of ripples for large values of Rδ 

The analyses previously summarized explain the appearance of rip
ples and predict their geometrical characteristics at incipient formation 

but only for moderate values of the Reynolds number, such that the flow 
regime in the boundary layer at the bottom of sea waves is laminar. 
However, under field conditions, the Reynolds number Rδ is often large 
and turbulence appears (Mazzuoli et al. (2011); Mazzuoli and Vittori 
(2019); Mazzuoli et al. (2018); Vittori et al. (2020a)). The linear stability 
analysis by Blondeaux (1990) was extended to consider the turbulent 
regime by Foti and Blondeaux (1995a), who considered the Reynolds 
averaged momentum equations and used a simple turbulence model. In 
particular, Foti and Blondeaux (1995a) modelled the Reynolds stresses 
by introducing a turbulent kinematic eddy viscosity νT that has a con
stant value in time and is independent of the distance from the sea 
bottom. An acceptable description of the flow within the bottom 
boundary layer can be obtained by considering a constant value of νT, if 
the no-slip condition at the bottom is replaced by a partial slip condition, 
as suggested by Engelund and Fredsoe (1982) in another context. 

Of course, the details of the flow close to the bed, where the velocity 
gradient in the vertical direction is very large, are not reproduced by the 
model. Notwithstanding this deficiency, the approach provides fair es
timates of the bed shear stress, because the unrealistic large values 
assumed by the eddy viscosity close to the bed balance the unrealistic 
small values of the velocity gradient induced by the partial slip condi
tion. The interested reader is referred to Engelund and Fredsoe (1982) 
and Sleath (1991) for a detailed discussion of this approximation. 

A best fitting procedure suggests that the constant value of the eddy 

viscosity can be fixed equal to νT = 0.1
(2π)2U

3/2
0r

̅̅̅
ks
ω

√

where ks is the Nikur

adse roughness, U0r and ω are the amplitude and the angular frequency 
of the velocity oscillations induced by the surface wave close to the bed, 
respectively. Because of the presence of the wall waviness, it is necessary 
to take into account that U0r and the eddy viscosity depend on x. 
Moreover, the slip velocity proposed by Sleath (1984) is uslip = −
U0r
2 ûei(ωt− ϕ) + c.c. where û and ϕ are dimensionless quantities. 

The main steps of the analysis of Foti and Blondeaux (1995a) are 
similar to those of the analysis carried out by Blondeaux (1990). Only 
vorticity equation is different because of the dependence of νT on the 
streamwise coordinate x. The results are qualitatively similar to those 
obtained in the laminar case but the extension of the analysis to the 
turbulent case allows to extend the range of the parameters which can be 
considered. Fig. 24 shows the wavelength λr of the ripples predicted for 

the turbulent case, i.e. for values of the parameter ρd
(ρs − ρ)gT2 =

ψ2
dR2

d
π2R4

δ 
smaller 

than those considered by Vittori and Blondeaux (1990) and more rele
vant for field cases. 
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Fig. 22. Limiting curves dividing the (Rδ, Fd)-plane in regions where a flat bed, 
rolling grain ripples, two-dimensional vortex ripples, brick-pattern ripples are 
expected to form 

(
Rd = 40, s = 2.65, μβ = 0.15

)
. Also shown are the experi

mental data by Sleath and Ellis (1978) and Horikawa and Watanabe (1968) for 
35 < Rδ < 45 (white points = rolling grain ripples, black points = vortex rip
ples, stars = brick pattern ripples). Adapted from Vittori and Blondeaux (1992). 
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Fig. 23. Range of γ within which the brick pattern ripples can appear, plotted 
versus Rδ for Rd = 30 and 40 (s = 2.65, μβ = 0.15). Experimental data of the 
transverse wavenumber by Sleath and Ellis (1978) are for 30 < Rd < 40. 
Adapted from Vittori and Blondeaux (1992). 

Fig. 24. Ratio between the amplitude U0/ω of the fluid displacement oscilla
tions and the ripple wavelength λr plotted versus the parameter ρd/(ρs − ρ)gT2. 
The theoretical curves are the result of the stability analysis of Foti and Blon
deaux (1995a) while the experimental measurements are those of Manohar 
(1955) and Sleath (1976) (adapted from Foti and Blondeaux (1995a)). 
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4.5. Large amplitude ripples and fully nonlinear models 

4.5.1. Oscillatory flow over vortex ripples for moderate values of Rδ 

Even though the linear and weakly nonlinear stability analyses 
previously summarized are able to describe the process which gives rise 
to two-dimensional and three-dimensional ripples and to predict some of 
their geometrical characteristics, they are no longer valid when the 
parameters of the problem are far from the critical conditions and the 
amplitude of the bedforms is no longer small. In this case, nonlinear 
effects are strong and a perturbation approach can not be used to 
describe the dynamics of ripples and to predict their time development. 
Under these circumstances, only the numerical integration of mo
mentum equations along with fluid and sediment continuity equations 
can be used to determine the flow field and the time development of the 
bottom forms. 

Early attempts to determine the dynamics of the vortices shed by the 
ripple crests were performed by Longuet-Higgins (1981) and Smith and 
Stansby (1985), who employed discrete vortex methods. These ap
proaches assume that the free shear layer generated by the boundary 
layer separation can be modelled as a large number of point vortices that 
are convected by the flow, which is computed by means of an inviscid 
approach. Later, the full two-dimensional problem was solved by Shum 
(1988) and Blondeaux and Vittori (1991a). In particular, Blondeaux and 
Vittori (1991a) considered a bottom profile described in parametric 
form by  

z =
hr

2
cos(αξ), x = ξ −

hr

2
sin(αξ) (24)  

where ξ is a dummy variable ranging from − ∞ to ∞, α is the wave
number of the periodic bottom profile and hr denotes its height (vertical 
distance between the crests and the troughs of the ripples). As observed 
in the field, the crests of the bottom forms turn out to be sharper than the 
troughs. Moreover, a comparison of the profile (24) with experimental 
data shows a fair agreement (see Sleath (1984), page 70). 

To determine the flow field, an orthogonal curvilinear coordinate 
system (ζ, η) is introduced 

ζ = x+
hr

2
e− αηsin(αζ), η = z −

hr

2
e− αηcos(αζ) (25)  

such that the bottom profile is mapped into the line η = 0. Then, since 
the flow is assumed to be two-dimensional, the stream function ψ and 
the vorticity Ω are introduced (ψ − Ω formulation). A finite difference 
approach is used to determine the time development of the vorticity 
field Ω from the vorticity equation and to obtain the stream-function ψ 
from the Poisson equation which follows from the vortocity definition 

∂2ψ
∂ζ2 +

∂2ψ
∂η2 = − JΩ (26)  

where J is the Jacobian of the transformation (25). More details can be 
found in Blondeaux and Vittori (1991a). 

The numerical approach was validated by comparing the results it 
provides with those of Blondeaux (1990) and Hara and Mei (1990a). 
Hara and Mei (1990a) determined the oscillatory flow over ripples of 
large amplitudes, for small values of the ratio between the amplitude of 
the fluid oscillations and the ripple wavelength. Fig. 25 shows the steady 
velocity component provided by the numerical solution of Blondeaux 
and Vittori (1991a) that is almost coincident with the results of Hara and 
Mei (1990a) which describe only the flow close to the bottom. However, 
the flow keeps attached to the bottom and flow separation is absent. 
Fig. 26 shows an example of the results obtained by Blondeaux and 
Vittori (1991a) for a ripple profile and a value of the Reynolds number 
which induce flow separation from the ripple crests and the generation 
of a free shear layer. The flow starts from rest and the horizontal velocity 
far from the bottom progresses as U0sin(2πt/T). At the beginning, the 
free stream is directed from the left to the right and clockwise vorticity is 

generated along the bed profile and particularly close to the crest of the 
ripple (Fig. 26a,b). Then, the boundary layer thickens on the down
stream side of the bottom forms till flow separates and vorticity of 
opposite sign is generated (Fig. 26c). The clockwise vorticity rolls up and 
gives rise to a well defined vortex (Fig. 26c,d). When the free stream 
velocity reverses, the clockwise vortex is no longer fed and it is simply 
convected from the right to the left by the local flow (Fig. 26e,f). 
Meanwhile, counter-clockwise vorticity is shed from the crest and the 
phenomenon repeats similarly during the following half cycle (Fig. 26g, 
h). The characteristic of the oscillatory flow over large amplitude ripples 
is the generation of vortex pairs which move because of the external flow 
and the self-induced velocity (Saffman (1995)). Of course, the size, the 
strength and the number of vortex structures generated by the oscilla
tory flow over a rippled bed depend on the parameters of the problem 
(Blondeaux and Vittori (1991b)). 

When the bottom is made up of cohesionless sediments, the vortices 
pick up the sediments from the bed and carry them into suspension. 

Fig. 25. Contours of the time averaged stream function of the oscillatory flow 
over a wavy wall for 2πδ

λr
= 0.0424,Rδ = 14.14 (figure from Blondeaux and 

Vittori (1991a)): a) hr/δ = 4.71, b) hr/δ = 14.14, c) hr/δ = 23.57. 
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Attempts to compute the dynamics of sediment particles can be made 
using a Lagrangian approach. Blondeaux and Vittori (1991b) attempted 
to model the motion of sediment grains over a rippled bed using the flow 
field computed by Blondeaux and Vittori (1991a). A significant 
improvement of the model was achieved by Hansen et al. (1994), who 
employed a discrete vortex method to determine the time development 
of the vortex structures generated by the boundary layer separation at 
ripple crests. The assumption of a two-dimensional flow limits the val
idity of the approach to moderate values of the Reynolds number. As 
discussed previously, the stability analysis of Hara and Mei (1990b) 
shows that the two-dimensional vortex structures generated at the ripple 
crests might be unstable and give rise to a three-dimensional flow. Hara 
and Mei (1990b) suggested that the transition from a two-dimensional to 
a three-dimensional flow is due to the centrifugal three-dimensional 
instability of the two-dimensional flow over two-dimensional ripples. 
The physical mechanism which causes the appearance of these distur
bances is similar to that leading to the growth of spanwise disturbances 
of the oscillatory flow around a circular cylinder for amplitudes of the 
fluid oscillations much smaller than the radius of the cylinder (Hall 
(1984)). 

Later, Blondeaux and Vittori (1999) and Scandura et al. (2000) made 
direct numerical simulations (DNS) of the three-dimensional oscillatory 
flow over two-dimensional ripples considering large values of both the 
ripple steepness and the amplitude of the fluid oscillations. The results of 
these DNSs extend the analysis of Hara and Mei (1990a) and give further 
information on the process through which the oscillatory flow over two- 
dimensional ripples becomes three-dimensional. In particular, Blon
deaux and Vittori (1999) and Scandura et al. (2000) showed that the 
nonlinear terms, which were not considered by Hara and Mei (1990a), 

have different effects which depend on the values of the parameters. 
Scandura et al. (2000) considered also cases characterized by am

plitudes of the fluid oscillations of the same order of magnitude as the 
ripple wavelength and a significant ripple steepness, even though these 
cases were characterized only by moderate values of the Reynolds 
number. In these cases, it was shown that the vorticity dynamics tend to 
generate vortex structures similar to mushroom vortices. 

Blondeaux and Vittori (1999) investigated sediment dynamics using 
the same code of Scandura et al. (2000) to evaluate the flow field and 
mimicking sediment transport by evaluating the trajectories of the 
‘passive’ sediment particles (one-way copupling). Even though further 
simulations are required to investigate the phenomenon for larger 
values of the Reynolds number, it appears that the three-dimensional 
vortex structures, generated by the spanwise instability of the basic 
two-dimensional flow, strongly affect particle trajectories and create 
relevant dispersion effects. When the Reynolds number is further 
increased, the large scale coherent vortices break down into smaller 
three-dimensional structures and turbulence appears. 

4.5.2. Oscillatory flow over vortex ripples for large values of Rδ 

Barr et al. (2004) studied the oscillatory flow over a rippled bed for 
large values of the Reynolds number, by means of a numerical approach 
that considers and solves momentum (Navier-Stokes) and continuity 
equations using a curvilinear coordinate system which follows the bot
tom profile (Winters et al. (2000)). The numerical approach is standard 
and uses a third-order Adams-Bashforth approach and a fourth-order 
compact spatial difference scheme to advance in time and to approxi
mate the spatial derivatives, respectively. Moreover, a fourth-order 
multigrid method is employed to determine the pressure field which is 
obtained from the Poisson equation (Adams (1991)). Even though the 
code used by Barr et al. (2004) allows also the use of the LES approach, 
their paper focuses mainly on the results obtained by means of Direct 
Numerical Simulations (DNS) of continuity and Navier-Stokes equa
tions, thus avoiding the introduction of a subgrid scale model. 

By comparing the oscillatory flow field over a rippled bed with that 
over a flat bed, Barr et al. (2004) showed that the ripple presence leads 
to a significant increase of the thickness of the bottom boundary layer 
because of the vortices shed at the ripple crests and the consequent in
crease of the turbulence level. In particular, turbulent bursts are origi
nated at flow reversal when the vortex structures generated during the 
previous half-cycle are convected back and interact with the vorticity of 
opposite sign which is shed by the crests of the bottom forms. More 
recently, the oscillatory boundary layer over a rippled bed has been 
determined by means of a DNS by Ønder and Yuan (2019), who used the 
open-source code Nektar++, which is based on a finite element method 
(FEM) and employs elements of variable size. 

Fig. 27 shows isosurfaces provided by the Q-criterion, which iden
tifies the regions characterized by high values of vorticity. Since the 
viscous stresses are function of the strain rate only, positive values of 

Q = 1
2

(
‖O‖

2
− ‖D‖

2
)

, D and O being the symmetric and antisymmetric 

part of the velocity gradient tensor, are indicative of volumes where the 
vorticity dominates. On the other hand, negative values of Q charac
terize regions where the strain rate or the viscous stresses dominate. 

Looking at Fig. 27, it can be observed that (i) a spanwise vortex is 
generated by the roll-up of the vorticity shed by the ripple crest and (ii) 
this coherent vortex is surrounded by vortex filaments which are 
generated by the stretching of residual vorticity patches. 

Of course the computational resources that are required to make 
direct numerical simulations of the oscillatory boundary layer over a 
wavy bed are very high and rapidly increase with increasing values of 
the Reynolds number in such a way that the simulations of the flow at 
high Reynolds number become prohibitive. 

High values of the Reynolds number can be handled more easily by 
means of the Large Eddy Simulation (LES) approach. The LES approach 
reduces the computational resources that are required by the DNS by 

Fig. 26. Vorticity contours of the oscillatory flow over a wavy wall Rδ = 50,
hr/λr = 0.15,U0/(ωλr) = 0.75 (ΔΩ = 0.15 U0

δ , thick lines = clockwise vorticity, 
thin lines = counter-clockwise vorticity). a) ωt = π/4; b) ωt = π/2; c) ωt =

3π/4; d) ωt = π; e) ωt = 5π/4; f) ωt = 3π/2; g) ωt = 7π/4; h) ωt = 2π (figure 
from Blondeaux and Vittori (1991a)). 
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modelling the dynamics of the smallest vortex structures. The Navier- 
Stokes equations are filtered by using a low-pass filter. However, the 
effects of the small vortices, which are not explicitly solved by the nu
merical scheme, on the resolved flow field should be modelled by means 
of so-called subgrid scale models. 

The turbulent boundary layer over a rippled bed was evaluated by 
using a LES approach also by Zedler and Street (2006) who coupled the 
study of the flow field to the evaluation of the sediment transport. The 
equations that were considered by Zedler and Street (2006) are the 
volume-filtered continuity and Navier-Stokes equations along with the 
volume-filtered advection-diffusion equation for sediment concentra
tion. In particular, the SFS stresses are quantified by means of the dy
namic mixed model of Zang et al. (1993). Moreover, the boundary 
condition for the velocity take into account the presence of a rough 
bottom. The SFS stress and scalar flux terms in the concentration 
equation are modelled by means of the same approach thus using the 
common assumption that the turbulent Schmidt number (ratio between 
the eddy viscosity and the eddy diffusivity) is equal to 1. The scale 
similarity (Bardina et al. (1983)) term is computed separately for the 
two equations. The pick-up rate of the sediment from the bottom is 
evaluated by means of van Rijn (1984)’s empirical function, which 
provides the pick-up rate as a function of the Shields parameter (ratio 
between the bottom shear stress and the quantity (ρs − ρ)gd). The results 
show that, although the main vortex structures generated by boundary 
layer separation at the ripple crest are two-dimensional, the flow be
comes rapidly three-dimensional. 

Chou and Fringer, 2010 used the large eddy simulation of the 
oscillatory flow over a wavy wall to simulate the dynamics of the bottom 
profile. In order to follow the time development of profile of the bottom, 
the hydrodynamic problem was solved by introducing a moving curvi
linear coordinate system fitted to the boundary. While the largest vortex 
structures are solved by the numerical procedure, the smallest vortices 
are modelled by introducing a dynamic mixed model. Fig. 28 shows the 
time development of the vortex structures generated by an oscillatory 
flow over a rippled bed as computed by Chou and Fringer (2010). 

To solve the advection-diffusion equation for the sediment concen
tration c, Chou and Fringer (2010) used an empirical relationship to 
quantify the sediment pick-up rate at the bottom. Then, they combined 
the suspended load with the bed load and determined the time devel
opment of the bottom profile using Exner equation and taking into ac
count the gravity-induced avalanche sediment transport, i.e. the local 
flux of sediment which takes place when the local bottom slope becomes 
larger than the angle of repose of the sediment. Hence, in their work, the 
time development of the bottom profile affects the hydrodynamics in a 
coupled simulation and the bottom features evolve because of the 
resolved turbulent flow. 

LES of the oscillatory flow over a rippled bed, coupled with the 
evaluation of the time development of the bottom profile, were carried 
out by Leftheriotis and Dimas (2016) who forced the no-slip condition at 
the bottom by using the immersed boundary method. The time devel
opment of the bedforms was obtained by numerically integrating sedi
ment continuity equation (Exner equation) and considering the flow 
averaged in the spanwise direction. The code by Leftheriotis and Dimas 
(2016) was able to simulate the appearance of ripples from a quasi-flat 
bed and to follow their time development. The numerical model predicts 
ripple wavelengths that agree with those predicted by empirical 
formulae. Moreover, as it can be seen in Fig. 29, the geometrical char
acteristics of ripples turn out to be independent of the form of the initial 
perturbation. Further Large Eddy Simulations have recently been per
formed by Chalmoukis et al. (2020), Jin et al. (2021), Jin et al. (2022). 

Since the ripples induced on a cohesionless bottom by an oscillatory 
flow are characterized by straight crests at equilibrium but they develop 
transient three-dimensional geometries when moving from one equi
librium state to another equilibrium state because of the change of the 
external forcing flow, Chalmoukis et al. (2020) performed LES of the 
oscillatory flow over three-dimensional, fixed wavy bed. The objective 
of their simulations was to determine the intercorrelation between the 
flow dynamics and the evolution of the defects of the bedforms that 
move from a two-dimensional equilibrium to another two-dimensional 
bottom configuration. In particular, Chalmoukis et al. (2020) 

Fig. 27. Vortex structures generated by an oscillatory flow over a rippled bed and visualized by isosurfaces of the Q parameter. The flow was computed by means of 
Direct Numerical Simulations by Ønder and Yuan (2019) who simulated two cases characterized by (i) Rδ = 70.7, hr

λr
= 0.167,U0T

λr
= 5.24; (ii) Rδ = 141, hr

λr
= 0.167,

U0T
λr

= 5.24 (courtesy of Asim Onder). 
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simulated the flow over a ripple characterized by a sinusoidal crest 
surrounded by other regular ripples characterized by straight crests. The 
sinusoidal crest introduces slope asymmetries on opposite sides of the 
crest, and Chalmoukis et al. (2020) found that steep-sloped regions 
generate thicker recirculation areas, whereas in the more gently-sloped 
regions the recirculation regions are thinner. Moreover, streamwise 
vortical structures appears close to the sinusoidal crest. These vortex 
structures might be responsible for the gradual reformation of the 
rippled bed, as they induce strong bed shear stresses and, hence, large 
sediment transport rates and rapid changes of the bottom profile. 

Jin et al. (2021) performed a high-resolution LES of the oscillatory 
flow over a sinusoidal ripple-like bedform and validated the code both 
qualitatively and quantitatively by comparing the numerical results 

with previous laboratory experiments and numerical simulations. In 
particular, Jin et al. (2021) analysed the dynamics of the “ribs”, strong 
vortex structures that develop perpendicular to the crests of the bed
forms. They showed that the ribs tend to appear either on the up-slope or 
the down-slope side of the ripple with a different spacing which ranges 
from λr

8 up to λr, depending on the accelerating/decelerating phases of 
the cycle. The presence of these three-dimensional vortex structures 
induces a large variability of the shear stress in the spanwise direction, 
which could favour the development of three-dimensional beforms. 
Since in the field the crests of the ripples are not necessarily straight and 
continuous and the bottom forms present irregularities called ‘defects’, 
Jin et al. (2022) performed high-resolution LES to investigate the flow 
field over both regular and irregular ripples. In particular, they 

Fig. 28. Vortex structures generated by an oscillatory flow over a rippled bed computed by means of a Large Eddy Simulation approach (Chou and Fringer (2010)), 
Rδ ≃ 640, d

δ ≃ 0.17 (courtesy of Yi-Ju Chou and Oliver Fringer). 
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considered two different types of ripple irregularities, i.e. ripples with a 
termination defect and ripples with a bifurcation defect. When the re
sults for irregular ripples are compared with those obtained for regular 
ripples, as expected, Jin et al. (2022) found that the maximum velocity, 
the vortex strength and the position of the vortex center over the ripples 
close to the bottom irregularity are all affected by the presence of the 
defect. 

A significant reduction of the computational costs can be achieved by 
considering the Reynolds averaged equations and determining only the 
ensemble averaged values of the velocity and pressure fields. Indeed, in 
the turbulent regime, velocity and pressure can be decomposed into two 
parts: an average value and a fluctuating contribution. The time devel
opment of the former contribution is described by the Reynolds aver
aged equations which, however, require a turbulence model to be 
closed. In fact, the Reynolds stresses generated by the nonlinear terms of 
Navier-Stokes equations, should be related to the mean flow thus 
removing any reference to the fluctuating part of the velocity. Of course, 
turbulence models of different complexity can be used to model the 
Reynolds stresses, starting from simple algebraic models to more com
plex two-equation models. 

Andersen (1999) modelled turbulence over two-dimensional ripples 
by means of a Boussinesq approach and a two-equation closure model 
(Wilcox (1988), Wilcox (1993)) and coupled the study of the flow with 
that of the bottom development. Sediment transport was split into bed 
load and suspended load components. The former was computed by 
means of an empirical relationship, whereas the suspended load was 
determined by solving the advection-diffusion equation for the sediment 
concentration. Andersen (1999) carried out simulations of several rip
ples and was able to reproduce both the appearance of ripples and their 
disappearance. 

More recently, Marieu et al. (2008) modelled the Reynolds stresses 
by means of the two-equation turbulence model by Wilcox (1988), 
which describes turbulence dynamics by evaluating the spatial and 
temporal development of k (the turbulent kinetic energy) and ωt (the 
turbulent vorticity). The time development of the bottom was numeri
cally determined by quantifying both the bed load and the suspended 
load and by using Exner (sediment continuity) equation. Marieu et al. 
(2008) were able to simulate the ripple growth from an almost flat bed 
showing that the ripples reach an equilibrium when the flux of sediment 
due to local avalanches balances the trend of the sediment to pile up at 
the ripple crests. In particular, the model by Marieu et al. (2008) was 
able to simulate ripple creation, growth, merging and disappearance. 
Sishah and Vittori (2022) used the k − ω-SST model by Menter et al. 
(2003) and computed the flow over vortex ripples for large values of Rδ. 
As in Blondeaux and Vittori (1991c), they observed that, for large values 
of the ratio between the fluid excursion and the ripple wavelength, the 
vortex shed on one side of the ripple crest when the external velocity is 
positive is no longer the mirror image of the vortex shed on the other 
side when the external flow reverses its direction and the dynamics of 
the vortex structures become quite complex. Moreover, a horizontal 
steady streaming is generated in the positive/negative direction 
depending on the initial conditions. 

Chen and Yu (2015) evaluated the time development of the ripples 
by using a two-phase flow model that considers the Reynolds-averaged 
momentum and continuity equations for both the fluid and sediment 
phases. It is worth pointing out that the model by Chen and Yu (2015) 
can be applied over the whole depth from the undisturbed sandy bed, 
where the sediment grains are at rest, up to the low concentration region 
far from the ripples. Moreover, neither a reference concentration nor a 
pickup function are required and there is no need to distinguish between 
the bed load and the suspended load since these empirical information 
are replaced by the interphase model. The results by Chen and Yu 
(2015), which are supported by a reasonable agreement with laboratory 
data, show that the two-phase flow model can well describe the 
formation-ejection process of vortices from the crests of the ripples as 
well as the trapping-lifting process of sediments by these vortex struc
tures. Further studies of ripple dynamics using a two-phase flow model 
were carried out by Salimi-Tarazouj et al. (2021) who determined the 
evolution of ripple geometries due to different wave forcing parameters. 
In particular Salimi-Tarazouj et al. (2021) made a series of numerical 
experiments and determined the response of the ripple bed to a step- 
change in the forcing waves simulating ripple ‘splitting’, ‘sliding’, 
‘merging’ and ‘protruding’ as the bedforms evolve to a new equilibrium. 

Even though the numerical simulations of the processes taking place 
close to a rippled bed are continuously improving, detailed experimental 
informations are required both to validate the models and to gain a more 
complete picture of the phenomenon. 

Earnshaw et al. (1995) used the particle image velocimetry (PIV) to 
visualize the largest vortex structures, thus providing data that can be 
used to test the results obtained by means of large eddy simulation. 
Yoshikawa et al. (2004) measured the velocity field within the oscilla
tory boundary layer over a wavy bottom characterized by gentle slopes 
(rolling-grain ripples). Yoshikawa et al. (2004) were able to visualize the 
flow structures and in particular the transient recirculating cells, which 
are generated by an oscillatory flow above naturally formed rolling- 
grain ripples. The evolution of the flow structures turned out to be in 

Fig. 29. Ripple appearance on a flat bottom forced by an oscillatory flow. In 
the figure the streamwise coordinate is made dimensionless by using the 
amplitude a0 of the fluid oscillation in the irrotational region. The sediment 
mobility number ψd is equal to 20 and the Reynolds number Rδ is about 140. 
Top panel: the ripples appear from an initial localized perturbation. Bottom 
panel: the ripples appear from a periodic bottom perturbation of small wave
length. Adapted from Leftheriotis and Dimas (2016) (courtesy of Atha
nassios Dimas). 
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agreement with the results of the theoretical investigations based on the 
assumption of small ripple amplitudes. Later, Rousseaux (2008) used the 
same experimental technique to measure the oscillatory flow over vor
tex ripples focussing his attention mainly on the vorticity dynamics and 
the existence of steady recirculating cells (see Fig. 30). The results by 
Rousseaux (2008) show the shedding of a vortex structure every half 
oscillatory cycle and the generation of a jet when the vortex structure is 
convected back by the external flow and passes over the crest of the 
ripple. 

The increasing power of actual computer has recently allowed the 
evaluation of the dynamics of the ripples by considering the dynamics of 
each sediment grain and the flow around each particle (Mazzuoli et al., 
2024). An example of the results is shown in Fig. 31. 

4.5.3. Time-varying bedforms and hysteresis effects 
Of course, the bedform characteristics change over time from their 

appearance till their equilibrium geometry is attained. As pointed out by 
Perillo et al. (2014a), understanding the morphological time develop
ment of the bedforms is important for the reconstruction of ancient 
sedimentary records. Hence, Perillo et al. (2014a) made laboratory ex
periments to investigate the time development of the ripples under 
purely unidirectional, oscillatory and combined-flow conditions. Their 
results show that the appearance and growth of the bedforms are similar 
for all types of forcing flows and are characterized by four stages: (i) 
incipient bedforms; (ii) growing bedforms; (iii) stabilizing bedforms; 
and (iv) fully developed bedforms. Moreover, the time development of 
the bedforms exhibits the same general trend for different flow types 
independently from the bedform size, the bedform shape and geometry 
(for example, two-dimensional versus three-dimensional bedforms), the 
flow velocity and the sediment size. Perillo et al. (2014b) made a similar 
experimental investigation on the initiation of bedforms from an artifi
cially generated defect on a flat bed under unidirectional, oscillatory, 
and combined flows to obtain a quantitative insight into the process that 
leads to the appearance of the bedforms. In particular Perillo et al. 
(2014b) used a time-lapse photography tecnique that allowed to obtain 

the time development of the downstream and upstream edges of the 
defects. 

Testik et al. (2005) made a laboratory investigation on the charac
teristics of ripples under changing wave conditions. They considered 
waves of small, moderate, and large amplitudes named S − , M− and L −
waves, respectively, and simulated three different cases of cyclic vari
ation of wave amplitude, i.e. the M − L − M cycle, the L − M − L cycle 
and the L − S − L cycle. Testik et al. (2005) observed three main 

Fig. 30. Experimental streamlines of the oscillatory flow over a rippled bed averaged over a period. Top panel: rolling grain ripples, bottom panel: vortex ripples 
(courtesy of Germain Rousseaux). 

Fig. 31. Enlarged visualization of the vorticity field generated by the oscilla
tory flow over a rippled bed and of the position of the sediment particles picked- 
up from the bottom at t/T = 19/20. The vorticity is scaled with the angular 
frequency ω of the velocity oscillations of the fluid far from the bottom. The 
particles are coloured by their streamwise velocity (red: positive values; blue: 
negative values; white: particles with almost zero speed) and the gray bar on 
the right hand side of the panel indicates the vorticity strength that is scaled 
with the angular frequancy ω (U0/ω = 8.0 cm, T = 2 s, ρs/ρ = 2.65, d = 0.28)
(courtesy of Marco Mazzuoli). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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different processes of the ripple adjustment to a new forcing flow: ripple 
splitting, ripple regrowth, and ripple flattening. For example, when the 
forcing waves are decreased from L − waves to to M − waves, the 
wavelength of the ripples also decreases and it attains a new equilib
rium. Then, when the amplitude of the forcing waves is increased back 
to its original value, the wavelength of the ripples returns back to its 
original value. On the other hand, during the L − S − L cycle, when the 
amplitude of the forcing flow decreases from the large value to the small 
value, the crests of the ripples are flattened but their wavelength appears 
to be constant. Then, when the amplitude of the forcing waves takes its 
original value, the height of the ripples grows back to its initial value, 
the wavelength of the ripples being essentially unaffected by the change 
of the forcing waves. 

Also Nienhuis et al. (2014) made laboratory experiments to observe 
ripple dynamics under changing forcing waves. They observed ripples 
that are characterized by a uniform wavelength at equilibrium and 
develop defects when they respond to changes of the forcing waves. 
When the amplitude of the water oscillations close to the sandy bed is 
decreased significantly, two new incipient crests appear in every ripple 
trough, but only one incipient crest grows into a new full-sized crest. It is 
intersting to point out that the visualizations showed that the same 
incipient crest (the right or the left incipient crest) prevails in every 
trough thus showing that the dynamics of a ripple affects the adjacent 
ripples. The experiments also showed that, when the amplitude of the 
fluid oscillations increases, the ripple crests become sinuous and even
tually break up giving rise to a three-dimensional bottom configuration. 

Jin et al. (2019) made a series of laboratory experiments to investi
gate the appearance and development of ripples under varying condi
tions. In particular Jin et al. (2019) measured the rate of ripple 
adjustment and the mean ripple wavelength both before and after the 
change in the wave forcing. They showed that an increase of the wave 
forcing leads to a faster growth of the ripples and a longer final wave
length. A decrease of the wave forcing leads to a shorter wavelength of 
the ripples. Moreover, they observed hysteresis phenomena. Jin et al. 
(2019) investigated also the role of the initial perturbation on the 
growth rate and final geometry of the ripples. A larger amplitude of the 
initial perturbation leads to a faster growth of ripples and a larger ripple 
wavelength. 

Of course, experimental data are essential to understand the dy
namics of ripples under a varying wave forcing. However, equally 
important is the availability of formulas able to predict the temporal 
evolution of the ripple geometry (Soulsby et al. (2012)). 

Of course, when the amplitude of the velocity oscillations close to the 
bottom is smaller than the threshold value for sediment motion, the 
sediments do not move and pre-existing ripples remain unchanged (relic 
ripples). On the other hand, when the amplitude of the velocity oscil
lations is larger than the threshold value for sediment motion, the ripple 
height and wavelength change and their time development should be 
predicted for any time-series of heights and periods of the surface waves. 
As pointed out by Soulsby et al. (2012), the experimental investigations 
show that, following a step change in the driving waves, the time 
development of the ripple height hr(t), from an initial value hr0 to a new 
equilibrium value hr,eq, can be described by an exponential relaxation 
given by 

hr

hr,eq
= 1 −

[

1 −
hr0

hr,eq

]

exp
(

−
βt
Te

)

(27)  

where Te is a characteristic time scale of the phenomenon and β is a 
coefficient that governs the rate of change. A more general expression, 
better suited to application to constantly varying field conditions, is 
provided by the following ordinary differential equation 

dhr

dt
=

β
Te

(
hr,eq − hr

)
(28) 

It is worth pointing out that Eq. (27) is a solution of Eq. (28) only if 

hr = hr0 at t = 0 and β, Te and hr,eq are time independent. Similar equa
tions can be used to describe the time-varying ripple wavelength λr(t), 
since also the wavelength was observed to follow an exponential 
relaxation. The characteristic time scale Te can be assumed to be the 
wave period, i.e. Te = T, and Soulsby et al. (2012) proposed to evaluate 
β by means of 

β = 2.996
ψ1.07

d

21, 700 + ψ1.07
d

(29)  

5. Genetic programming to predict ripple characteristics 

In the last years, the use of artificial intelligence has become wide
spread to solve any kind of problem and, in artificial intelligence, ge
netic programming is an approach that mimic the natural process to 
select a program to solve a particular problem. 

Goldstein et al. (2013) used genetic programming, to obtain a pre
dictor for the wavelength and the height of ripples. In particular, 
Goldstein et al. (2013) trained their genetic algorithm with data selected 
using a maximum dissimilarity selection routine that allowed them to 
use less data for the training of their software and more data to test the 
results. They obtained a smooth and physically meaningful predictor 
that shows that the ripple wavelength is a weakly nonlinear function of 
both the grain size and the fluid orbital excursion close to the bottom. 
When the predictions are compared with the results of other ripple 
predictors, Goldstein et al. (2013) found that their results are charac
terized by a lower normalized root mean squared error thus showing 
that the machine learning techniques can be successfully used to develop 
a good ripple predictor, if a large data set is available. However, as 
pointed out by Goldstein et al. (2013) themselves, the new predictor 
does not consider i) the details of ripple shape (which is assumed to be 
characterized only by a characteristic length and a characteristic 
height), ii) the possible presence of three dimensional ripples, iii) het
erogeneous sediments, iv) the possible presence of a steady current, v) 
the effects of biota and vi) hysteresis effects. These limitations are 
widely discussed by Goldstein et al. (2013) but it is important to note 
that also the other existing ripple predictors capture one or more of these 
processes but not all. 

6. Migrating ripples 

When a steady current is superimposed to propagating surface 
waves, the so-called wave-current ripples are observed, the character
istics of which fall between those of the ripples generated by a pure 
oscillatory flow and those of the current ripples described a.o. by Vittori 
and Blondeaux (2022). Since the flow generated close to the bottom by 
sea waves is characterized by an oscillatory velocity component plus a 
steady velocity component originated by nonlinear, second-order effects 
(Longuet-Higgins (1953)), the ripples generated by surface waves 
characterized by large amplitudes have geometrical and kinematical 
characteristics that are somewhat similar to those of the ripples gener
ated by the interaction between a wave of quite small amplitude and a 
steady current. In particular, the ripples migrate in the direction of the 
steady velocity component. 

The distinguishing geometric characteristic of wave-current ripples 
and that of the ripples generated by large amplitude waves is the 
asymmetry of their profile. In Fig. 7 the symmetry index of ripples (we 
remind that the symmetry index is defined as the ratio l2

l1 
between the 

length l2 of the gentle (up-current) side to the length l1 of the steep 
(down-current) side of the ripples) is plotted versus the ratio between 
the steady velocity component us and the maximum near-bed orbital 
velocity U0, which are evaluated just outside the bottom boundary layer. 
When the steady velocity component is generated only by the propa
gation of a surface wave, the value of us is evaluated according to the 
theory of Longuet-Higgins (1953). 

Not much is known theoretically on wave-current ripples and the 
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available results are mainly for the asymmetric ripples generated by sea 
waves of large amplitude. Blondeaux et al. (2000) and Blondeaux et al. 
(2015) investigated the effect that the steady streaming generated by 
propagating surface waves has on the formation of ripples by means of a 
linear stability analysis and determined the symmetry index and the 
migration speed of the bedforms as function of the hydrodynamic and 
morphodynamic parameters of the problem. 

Fig. 32, where the experimental data are plotted along with the 
theoretical predictions of Blondeaux et al. (2000) and Blondeaux et al. 
(2015), shows that the ripples become more asymmetric as the steady 
velocity component increases. Moreover, comparing the data of wave- 
current and current ripples with those of wave ripples, it can be 
observed that a unidirectional current unrelated to waves affects ripple 
asymmetry in much the same way as wave-induced mass-transport. 

Blondeaux et al. (2000) evaluated also the migration speed of the 
ripples and compared the theoretical results with experimental mea
surements. Since the theoretical values depends on the formula used to 
estimate the sediment transport rate, Blondeaux et al. (2000) obtained 
results using both the formula of Hallermeier (1982) and that of Sleath, 
1984. A comparison between the theoretical and experimental values of 
the quantity G1i

α , that is proportional to the migration speed of the ripples, 
is shown in Fig. 33. 

Even though the theoretical analyses of Blondeaux et al. (2000) and 
Blondeaux et al. (2015) assume the flow regime in the bottom boundary 
layer to be laminar and the results are strictly valid only for ripples at the 
initial stage of their formation or for mature ripples of small amplitude 
(rolling-grain ripples), the comparison of the theoretical findings with 
laboratory measurements seems to suggest that the theoretical analyses 
capture the main ingredients of the phenomenon of ripple migration. 
However the reader should consider that, when the amplitude of the 
bottom forms grows and the ratio between the height and the length of 
the bottom forms becomes larger than a critical value ranging about 
0.17 (Sleath (1984)), the bottom boundary separates from the crests of 
the ripples, rolls up and generates vortex structures which make the 
linear analysis inappropriate. Hence the agreement appears to be largely 
fortuitous. 

7. Conclusions and possible future developments 

When the local water depth is smaller than half the length of the 
surface wave and the bottom is made up of cohesionless sediments, the 

surface wave can give rise to the formation of bedforms characterized by 
a length that is of the order of magnitude of the amplitude of the water 
particle oscillations close to the bottom, i.e. a length of the order of tens 
of centimetres. Even though different bottom profiles are observed (e.g. 
two-dimensional ripples, brick-pattern ripples, tile ripples, …), in 
practical applications characterized by a large spatial scale, ripples are 
often considered just as a bottom roughness the size of which can be 
determined by means of empirical predictors. If a detailed knowledge of 
the flow within the bottom boundary layer is required, the appearance of 
ripples and their geometrical characteristics can be predicted by means 
of stability analyses that are briefly summarized herein along with the 
results they provide. A comparison of the theoretical predictions with 
laboratory measurements seems to support the results of the stability 
analyses. Indeed, the linear and weakly nonlinear stability analyses 
provide fair predictions of the size of the ripples and of their plane view 
but their equilibrium amplitude can be predicted only taking into ac
count strong nonlinear effects that call for numerical approaches. The 
predictions of the stability analyses are considered ‘fair’ because the 
uncertainty of the predictors of the sediment transport rate makes it 
difficult to obtain accurate results but the stability analyses can describe 
the main characteristics of the ripples as function of the hydrodynamic 
and morphodynamic parameters of the problem. Moreover, the stability 
analyses commonly require the flow regime in the bottom boundary 
layer to be laminar. However, often turbulence appears being triggered 
also by the bottom roughness. Hence, the stability analyses should be 
extended to cover also the turbulent regime. Only the analysis of Foti 
and Blondeaux (1995b) considers the turbulent regime but the Reynolds 
equations are closed by means of a very simple turbulence model. 
Taking into account that the actual turbulence models (e.g. the two- 
equaton turbulence model e − ω) provide a reliable descrition of tur
bulence dynamics, to improve the predictions of bedform characteris
tics, their use is desirable. Moreover, further efforts should be made to 
refine the actual predictors of the sediment transport rate generated by 
the flow due to the interaction of a steady current with a propagating 
surface wave and to refine the description of the effects that the local bed 
slope has on sediment dynamics. Recently, attempts have been made to 
quantify the sediment transport rate and to determine the time devel
opment of bottom forms by means of direct numerical simulations 
(DNS), to evaluate the fluid motion, and discrete element methods 
(DEM), to evaluate the trajectories of the sediment grains (e.g. Kidane
mariam et al. (2013); Kidanemariam and Uhlmann (2014); Mazzuoli 

Fig. 32. Theoretical value of the symmetry index l2/l1 plotted versus us/U0 along with the experimental measurements (Rd = 25 and Re = 112.5, 450 (or equiva
lently Rδ = 15, 30) are the values of the Reynolds numbers of the experiments of Blondeaux et al. (2015)). 
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et al. (2016, 2019, 2020); Vittori et al. (2020b); Mazzuoli et al. (2022)). 
This approach can describe the details of flow around each sediment 
grain by solving Navier-Stokes and continuity equations and by forcing 
the no-slip condition at the surface of the grain. Hence, it is possible to 
evaluate the ‘exact’ values of the force and torque that the fluid exerts on 
each sediment grain and to compute its ‘exact’ trajectory by integrating 
Newton’s laws. As shown in Figs. 31 and 35, where the vorticity field 
generated by an oscillatory flow over a rippled bottom made by cohe
sionless sediments is plotted at particular phases of the cycle along with 
the position of the sediments, this approach can describe i) the large 
vortex structures shed by the ripple crest, ii) the small turbulent eddies 
and iii) the dynamics of the sediments dragged by the flow. The results 
show that the large values of the bottom shear stress induced by the 
interaction of the coherent vortex structures with the bottom pick up a 
lot of sediments that are trapped within the bottom boundary layer and 
are dragged by the local velocity field. However, when the boundary 
layer separates from the bottom generating a free shear layer that rolls 
up and creates a large vortex, the sediments are ejected from the vortex 
core because of centrifugal effects. Even though this approach can 
describe the dynamics of both the large scale vortex structures as well as 
that of the small eddies shed by the sediment grains, it implies high 
computational costs and it cannot be used to describe large fluid do
mains. Moreover, to limit the computational costs, the sediment grains 
are assumed to have a spherical shape of uniform diameter d. Hence, it is 
not possible to describe the grain sorting process which is present when 
the bottom is made up of a mixture of sediments and ripples appear. For 
example, it is not possible to mimic the results by Foti and Blondeaux 

(1995a), who observed the ripples generated by an oscillatory flow over 
a sediment mixture characterized by a bimodal sediment distribution. 
Foti and Blondeaux (1995a) showed that the coarser fraction tends to 
oscillate around the crests of the bedforms while the finer fraction tends 
to move towards the troughs (see Fig. 34). Moreover, Foti and Blon
deaux (1995a) observed also that the sorting phenomenon affects the 
dynamics of the ripples since the ripples generated by a well sorted 
sediment turn out to be shorter than those generated by a poorly sorted 
sediment. 

However, the power of computers is continuously increasing and in a 
near future it will be possible to simulate the dynamics of a sediment 
mixture taking also into account the irregular shape of the sediment 
grains. For the moment, while the motion of the fluid phase is deter
mined by solving Navier-Stokes and continuity equations, the motion of 
the sediment particles is often determined by means of a point-particle 
approach where appropriate closure relationships are introduced to 
evaluate the force and torque acting on the particles and to compute 
their trajectory. For example Finn et al. (2016) used a point particle 
approach to investigate sediment dynamics in an oscillatory flow over a 
rippled bed. However, it should be pointed out that this approach re
quires that the “disturbance” of the computed flow field due to the 
presence of a particle be smaller than the resolved flow scales. In other 
word, the point-particle approach requires that the particle size be 
significantly smaller than the grid-cell. 
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Fig. 33. Theoretical and experimental values of the quantity G1i
α , which is proportional to the migration speed of the ripple. The values plotted in panel (a) are 

computed by evaluating the sediment transport rate by means of the formula by Hallermeier (1982) whereas those plotted in panel (b) are obtained by means of the 
formula by Sleath (1984) (black squares, 5 < Rδ < 10, white circles, 10 < Rδ < 15, black circles, 15 < Rδ < 20, white triangles, 20 < Rδ < 25, black tri
angles, 25 < Rδ < 30.) 

,

Fig. 34. Grain sorting over ripples. The yellow sediment grains are coarser that the red sediments and pile up at the crests of the ripples that are generated in a U-tube 
by an oscillatory flow. The figure shows a top view of the bottom at two different phases of the cycle (adapted from Foti and Blondeaux (1995a)). (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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