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Abstract. In Bayesian statistics, a continuity property of the posterior distribution with respect to the observable variable is crucial
as it expresses well-posedness, i.e., stability with respect to errors in the measurement of data. Essentially, this requires analyzing the
continuity of a probability kernel or, equivalently, of a conditional probability distribution with respect to the conditioning variable.

Here, we tackle this problem from a theoretical point of view. Let (X,dX) be a metric space, and let B(Rd ) denote the Borel
σ -algebra on R

d . Let π(·|·) : B(Rd ) × X → [0,1] be a dominated probability kernel, i.e. of the form π(dθ |x) = g(x, θ)π(dθ) for
some suitable function g : X × R

d → [0,+∞). We provide general conditions ensuring the Lipschitz continuity of the mapping
X � x �→ π(·|x) ∈ P(Rd) when the space of probability measures P(Rd) on (Rd ,B(Rd)) is endowed with a metric arising within
the optimal transport framework, such as a Wasserstein metric. In particular, we prove explicit upper bounds for the Lipschitz constant
in terms of Fisher-information functionals and weighted Poincaré constants, obtained by exploiting the dynamic formulation of the
optimal transport.

Finally, we give some illustrations on noteworthy classes of probability kernels, and we apply the main results to improve on some
open questions in Bayesian statistics, dealing with the approximation of posterior distributions by mixtures and posterior consistency.

Résumé. En statistique bayésienne, une propriété de continuité de la distribution a posteriori par rapport à la variable observée est
cruciale puisque’elle exprime le caractère bien posé du problème, c’est-à-dire la stabilité par rapport aux erreurs de mesure dans
les données. Cela nécessite essentiellement d’analyser la continuité d’un noyau de probabilité ou, de manière équivalente, d’une
distribution de probabilité conditionnelle par rapport à la variable de conditionnement.

Ici, nous abordons ce problème d’un point de vue théorique. Soit (X,dX) un espace métrique, et soit B(Rd ) la tribu borélienne
sur Rd . Soit π(·|·) : B(Rd) ×X → [0,1] un noyau de probabilité dominé, c’est-à-dire de la forme π(dθ |x) = g(x, θ)π(dθ) pour une
fonction appropriée g : X → [0,+∞). Nous fournissons des conditions générales assurant la continuité lipschitzienne de l’application
x ∈ X �→ P(Rd) lorsque que l’espace des mesures de probabilités P(Rd) sur (Rd ,B(Rd )) est muni d’une métrique issue d’un
cadre de transport optimal, telle qu’une métrique de Wasserstein. En particulier, nous prouvons des bornes supérieures explicites pour
la constante de Lipschitz en termes de fonctionnelles d’information de Fisher et de constantes de Poincaré pondérées, obtenues en
exploitant la formulation dynamique du transport optimal.

Enfin, nous donnons quelques illustrations sur des classes remarquables de noyaux de probabilité, et nous appliquons nos résul-
tats principaux pour améliorer certaines questions ouvertes en statistique bayésienne, traitant de l’approximation de distributions a
posteriori par des mélanges et la consistance a posteriori.
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1. Introduction

1.1. Formulation of the problem and main contributions

Several problems in probability and statistics involve mappings of the form x �→ π(·|x), where π(·|·) : B(Rd) × X →
[0,1] is a probability kernel. In general, X is a metric space endowed with distance dX and Borel σ -algebra X , while
B(Rd) stands for the usual Borel σ -algebra on R

d . Being any probability kernel π(·|·) conceivable as a mapping from X
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into the space P(Rd) of all probability measures (p.m.’s) on (Rd,B(Rd)), our main goal is to provide general conditions
for getting a global form of Lipschitz continuity, namely

(1.1) dP(Rd )

(
π(·|x1),π(·|x2)

) ≤ LdX(x1, x2) ∀x1, x2 ∈ X,

where dP(Rd ) is a suitable distance on P(Rd) and L ≥ 0. Of course, the problem is strongly influenced by the choice of
the distance dP(Rd ) which, at least at the level of abstract theory, can be done in several ways. See, e.g., the review [50].
Here, we will focus only on the p-Wasserstein distance Wp , p ≥ 1, and the total variational distance dTV because of
their mathematical tractability, their clever conception as minimal transport distances, and their relationships with other
probability metrics. For the sake of clarity, we recall that

dTV(μ, ν) := sup
A∈B(Rd )

∣∣μ(A) − ν(A)
∣∣ ∀μ,ν ∈P

(
R

d
)
,

Wp(μ, ν) := inf
η∈F(μ,ν)

(∫
R2d

|θ1 − θ2|pη(dθ1dθ2)

)1/p

∀μ,ν ∈Pp

(
R

d
)
,

where Pp(Rd) := {ζ ∈ P(Rd) : ∫
Rd |θ |pζ(dθ) < +∞} and F(μ, ν) denotes the class of all p.m.’s on (R2d ,B(R2d)) with

first marginal μ and second marginal ν. See, e.g., [5,82,83] for further information about the p-Wasserstein distance.
Our main results are concerned with dominated kernels of the form

(1.2) π(B|x) :=
∫

B

g(x, θ)π(dθ) ∀B ∈ B
(
R

d
)
,∀x ∈ X,

with some measurable, non-negative function g and some measure π on (Rd ,B(Rd)). In this setting, we provide novel
contributions in different directions. First, we formulate a general theory aimed at solving (1.1), with emphasis on es-
timates for the Lipschitz constant L. See Theorem 2.2 and its extensions in Section 4. Second, we illustrate the new
methods on some well-known classes of probability kernels, such as exponential families (see Section 2.2) and certain
truncation families (see Section 4.3). Third, we show the usefulness of estimate (1.1) for the solution of other allied ques-
tions, mainly of statistical nature (see Section 3). We emphasize the following strength points of our theory: the generality
of the kernels under consideration, which are not constrained to belong to specific classes; the estimates for the constant L

given in terms of some well-known functionals involving g and π ; the focus on the 2-Wasserstein distance, for which we
will take advantage of the dynamic formulation, recalled in Section 4.1; the inclusion of the non-standard case of kernels
with a support that varies with x (see Section 4.2).

1.2. Basic motivations from probability and Bayesian statistics

A basic motivation for the analysis of a property like (1.1) comes from the theory of (regular) conditional distributions
and its applications. In fact, probability kernels arise naturally in connection with the disintegration problem, within the
abstract measure-theoretic formulation due to Kolmogorov. See, e.g., Theorems 6.3 and 6.4 in [57], and Chapters 1-
5 of [73] for an overview. For clarity, we recall the notion of disintegration, with the same notation of Section 1.1:
given a random vector (X,Z) on a probability space (�,A ,P) with values in X × R

d , we say that a probability kernel
π(·|·) : B(Rd) × X → [0,1] solves the disintegration problem if E[π(B|X)1A(X)] = P[X ∈ A,Z ∈ B] holds for any
B ∈ B(Rd) and any A ∈ X , where 1A denotes the indicator function. The well-known issue of non-uniqueness of
solutions to the disintegration problem (in the sense that if π1(·|·) is a solution, then π2(·|·) is also a solution as soon
as P[π1(·|X) 
= π2(·|X)] = 0) introduces a remarkable gap between theory and practice, since it entails that conditional
probabilities of the form P[·|X = x] are in general meaningless for a single x ∈ X such that P[X = x] = 0. See the
discussion about the so-called Borel paradox in [73]. However, the necessity of pointwise evaluations usually emerges
in Bayesian inference (see [25] and the reference therein), statistical mechanics (see e.g. [60]) and theory of stochastic
processes (see e.g. [59]), where x stands for some really observed datum and the observer would like to evaluate a
conditional probability exactly at x. This foundational mismatch could be overcome by introducing suitable additional
conditions that grant uniqueness in the disintegration problem: in fact, we recall that, if (the distribution of) X has full
support in X, then there exists at most one probability kernel π(·|·) satisfying both the disintegration and the property
that X � x �→ π(·|x) ∈ P(Rd) is continuous with respect to the topology of weak convergence on P(Rd). The existence
of such a continuous representative, under additional conditions on the joint distribution of (X,Z), was first analyzed in
[85]. See also Chapter 9 of [80]. In this respect, a stronger form of continuity like (1.1) expresses a quantitative stability
of conditional distributions with respect to small deviations of the observed point, in analogy with the classical notion



1780 E. Dolera and E. Mainini

of well-posedness introduced by Hadamard. However, a general formalization seems still lacking, and deserves deeper
investigations.

A specific situation of interest arises in Bayesian statistics in the case that the joint distribution of (X,Z) turns out
to be absolutely continuous with respect to a product measure, say λ ⊗ π , on (X × Rd ,X ⊗ B(Rd)), with density
f : X×R

d → [0,+∞). When a (jointly) continuous density f is assigned as starting point of the analysis, the conditional
distribution of Z given X = x emerges more naturally from the well-known Bayes formula, rather than a disintegration.
Precisely, P[Z ∈ ·|X = x] is given by a kernel of the form (1.2) with

(1.3) g(x, θ) = f (x, θ)∫
Rd f (x, τ )π(dτ)

for any x ∈X such that
∫
Rd f (x, τ )π(dτ) > 0. In this framework, very basic results aimed at proving a local form of (1.1)

are contained in our recent paper [35], which is confined to the choice of the total variation distance. In the present paper,
we will improve on the results of [35] by relaxing the regularity assumptions, by providing global Lipschitz continuity,
and most importantly by considering the Wasserstein distance. Concerning other quantitative estimates like (1.1), the
literature is relatively scant. A fairly general approach can be found in the work [77] by A.M. Stuart, who minted the
expression Bayesian well-posedness for a local version of (1.1). See Section 4.2 of [77]. See also the discussion about
well-posedness in [61].

Another strong motivation from Bayesian inference is the following. Let us consider again the evaluation of the condi-
tional probability P[Z ∈ ·|X = x]. Besides disposing of a specific datum x ∈ X, we assume the presence of some noise in
the process of observation. This leads us to interpret x as a realization of ϕε(X) rather than of X itself, where ϕε : X→X

is some random perturbation of the identity map, stochastically independent of (X,Z). If we dispose of some apriori
bound (pointwise or in the mean) on the discrepancy between ϕε and the identity map, we could exploit a property like
(1.1) to get a bound on the discrepancy between the conditional distributions P[Z ∈ ·|X = x] and P[Z ∈ ·|ϕε(X) = x].
That is, (1.1) highlights the impact of the perturbation of the data in inference. This remark is of some relevance in the
recent studies on differential privacy. See, e.g., [14,58].

1.3. Further motivations and applications

We present a short list of problems that further motivate our analysis and represent the main applications of our theory.
We shall provide new explicit solutions to such problems in Section 3, by stressing the key role of (1.1). We also mention
some related works in the literature, that often make use a property like of (1.1) only as a technical tool.

(a) Bayesian well-posedness. In the same spirit of [77], by Bayesian well-posedness we mean the validity of a local
version of (1.1) along with (1.2)-(1.3). This notion have been investigated in the context of Bayesian inverse problems
in [29,30,56,61,77,78,81]. Due to their specific focus, these papers only deal with kernels arising from linear regression
problems, which are in exponential form. In Sections 2.2 and 3.1 we also analyze Bayesian well-posedness with expo-
nential kernels and, by applying our main results from Section 2, we provide new estimates for the Lipschitz constant. We
also consider the customary situation of an inference process with multiple exchangeable observations. Other new results
on Bayesian well-posedness will be given in Section 4.3 where we analyze Pareto-like statistical models.

(b) Approximation of posterior distributions by mixtures. This problem arises in Bayesian inference when the posterior
is not expressible in closed form. To carry out the inferential procedures, a possible strategy is to approximate the prior
by a mixture of conjugate prior (conjugation being referred to the statistical model), leading to an approximated posterior
which is again in the form of a mixture. Here, property (1.1) yields a bound for the error in approximating the posterior,
besides a more precise characterization of the posterior weights. See Section 3.2. See also [84] for developments in
parametric settings, [74] for the nonparametric approach, and [76] for density estimation. In particular, Proposition 2 of
[74] is an evident application of (1.1).

(c) Bayesian consistency. The foundational topic of frequency validation of Bayesian procedures (see [31] and [47,
Chapter 6]) can be rewritten as an approximation problem between posterior distributions. See Section 3.3 along with our
recent contributions [22,33,34], where (1.1) is at the core of the main argument.

Finally, we foresee a number of other interesting applications that, for reason of space, are not developed in this paper.
Thus, we just mention the field of: Bayesian robustness (see [67]); Bayesian deconvolution and empirical Bayes methods
(see [37]); theory of computability (see [1]). Hopefully, a general theory of Bayesian well-posedness could bring novel
contributions also to these fields.
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2. Main results

2.1. Lipschitz estimates in terms of dTV, W1 and W2

The results of this subsection are concerned with kernels of the form (1.2) which fulfill the following

Assumptions 2.1. Let π be a p.m. on (Rd ,B(Rd)) such that supp(π) =  for some (nonempty) connected open set
 ⊆R

d , and π(∂) = 0. Let X be a convex open subset of Rm, endowed with the reference σ -algebra X of all Lebesgue-
measurable subsets of X. Finally, let the function g be an element of L1

Lm⊗π
(X × ) with

∫


g(x, θ)π(dθ) = 1 for all
x ∈ X, where Lm denotes the m-dimensional Lebesgue measure.

In the main theorem, we will also assume that g ∈ L1
π (;W 1,1

loc (X)), meaning that the distributional gradient of the
mapping x �→ g(x, θ) (denoted by ∇x ) belongs to L1

loc(X) for π -a.e. θ ∈  and that ∇xg ∈ L1
Lm⊗π

(X̃× ) for any open

set X̃ compactly contained in X. In such a case, if g(x, ·) > 0 for π -a.e. θ ∈ , we define the Fisher functional of g

relative to π as

(2.1) Jπ

[
g(x, ·)] :=

(∫


|∇xg(x, θ)|2
g(x, θ)

π(dθ)

) 1
2

.

Another key assumption of the theory will be the validity of the so-called weighted Poincaré-Wirtinger inequalities.
We say that a Radon measure μ on (,T ) satisfies a weighted Poincaré-Wirtinger inequality of order q ∈ [1,+∞) if a
constant Cq exists such that

(2.2) inf
a∈R

(∫


∣∣ψ(θ) − a
∣∣qμ(dθ)

) 1
q ≤ Cq

(∫


∣∣∇ψ(θ)
∣∣qμ(dθ)

) 1
q

holds for every ψ ∈ C1
c (). Here, ψ ∈ C1

c () means that ψ is the restriction to  of a C1 compactly supported function
on R

d . We denote by Cq [μ] the best constant in such inequality and we put C[μ] := C2[μ]. Further details are contained
in Section A.3.

We also consider (unweighted) Sobolev–Poincaré inequalities. Let either 1 ≤ p < d or 1 = p = d . We say that 

satisfies a Sobolev–Poincaré inequality of order p if a constant Sp exists such that

(2.3) inf
a∈R‖ζ − a‖Lp∗

() ≤ Sp‖∇ζ‖Lp() for any ζ ∈ C1
c (),

where p∗ = dp
d−p

if 1 ≤ p < d and p∗ = +∞ if p = d = 1. We denote by Sp() the corresponding best constant.

Theorem 2.2. For a given kernel π(·|·) in the form (1.2), let Assumptions 2.1 be in force. Let also g ∈ L1
π (;W 1,1

loc (X)).
When Wp is involved, assume further that

∫


|θ |pπ(dθ |x) < +∞ for Lm-a.e. x ∈X. The following statements hold.

(i) Suppose that

K := ess sup
x∈X

∥∥∇xg(x, ·)∥∥
L1

π ()
< +∞.

Then, there exists a dTV-Lipschitz version of π(·|·), satisfying (1.1) with L = K/2.
(ii) For 1 < p ≤ +∞ and q = p

p−1 , suppose that

K := π()1/qCq [π] ess sup
x∈X

∥∥∇xg(x, ·)∥∥
L

p
π ()

< +∞.

Then, there exists a W1-Lipschitz version of π(·|·), satisfying (1.1) with L = K .
(iii) If g > 0 (Lm ⊗ π)-a.e. and

K := ess sup
x∈X

C
[
g(x, ·)π]

Jπ

[
g(x, ·)] < +∞,

then there exists a W2-Lipschitz version of π(·|·), satisfying (1.1) with L = K .
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(iv) If g > 0 (Lm ⊗ π)-a.e., π = Ld ¬
 and

K := Sp() ess sup
x∈X

∥∥∥∥ 1

g(x, ·)
∥∥∥∥

1/2

L
p

2−p ()

∥∥∇xg(x, ·)∥∥
L

r
r−1 ()

< +∞,

then there exists a W2-Lipschitz version of π(·|·), satisfying (1.1) with L = K .

We notice that the assumption g > 0 (Lm ⊗ π)-a.e., made in points (iii)–(iv), entails that support of the p.m. π(·|x)

coincides with  for Lm-a.e. x in X. We will refer to this fact in the sequel by saying we are in the case of fixed domains.
In Section 4.2 we will provide other new results that generalize points (iii)–(iv) to the situation of moving domains,
meaning that the support of π(·|x) is allowed to vary smoothly with x. Concerning the first two points of Theorem 2.2,
we remark that the assumptions of point (ii) imply the ones of point (i), which is formally the limit case p = 1 of point
(ii). On the other hand, if  is bounded, the elementary inequality W1 ≤ 2diam()dTV allows to deduce an estimate for
the W1 distance under the assumptions of point (i). Moreover, we notice that point (iv) holds whenever  is a domain for
which the Sobolev–Poincaré inequality (2.3) is satisfied. Therefore, point (iv) applies for instance if  is the whole of Rd

(and Sp(Rd) is explicit, see [7,79]) or if  is a W 1,p extension domain with Ld() < +∞ (see, e.g., [62, Chapter 12]).
More generally, it applies if  is a John domain (see [21,26,55]), including the half space and domains with compact
Lipschitz boundary. If d = 1, (2.3) holds on any interval  ⊆R with S1() = 1.

We conclude with a brief discussion about the best constant in the weighted Poincaré-Wirtinger inequality (2.2). The
most classical Poincaré inequalities hold by taking μ to be the d-dimensional Lebesgue measure on a bounded domain 

with Lipschitz boundary and q = 2: the reciprocal square of C[Ld ¬
] is the first nontrivial eigenvalue of the Neumann

Laplacian on . If μ is the d-dimensional Lebesgue measure on a bounded convex set  ⊂ R
d , the classical result by

Payne and Weinberger [70] shows that C[Ld ¬
] is proportional to the diameter of , see also [2,12,38] for q 
= 2.

Explicit estimates for star-shaped domains are found in [42]. According to the Bakry–Emery condition in the Euclidean
setting (see [10]), if μ is a p.m. on a convex set  ⊆Rd and V ∈ C2() exists such that

(2.4) μ(dθ) = e−V (θ) dθ,
〈
Hess[V ]ξ, ξ

〉 ≥ α > 0 in  for any ξ ∈R
d ,

then (2.2) holds with C[μ] ≤ 1/
√

α. See for instance [66] or [6, Chapitre 5], see also [24,65]. On the other hand, it
is shown in [44] that for any log-concave measure μ on a bounded convex domain  of Rd (i.e., for any convex V ),
the constant C[μ] can be bounded explicitly by diam()/π . Therefore, the Poincaré best constant can be improved
by the presence of a log-concave weight with α > 0 (the unweighted case corresponding here to V = 0). Let us also
mention the result by Bobkov [16] which allows to estimate the Poincaré constant of a log-concave measure μ on R

d in
terms of the variance, i.e., C[μ] ≤ 12

√
3(

∫
Rd |θ − μ|2μ(dθ))1/2 with μ := ∫

Rd θμ(dθ). The fundamental Bakry–Emery
citerion admits other generalizations. For instance, (2.2) holds on R

d if the condition 1
2 |∇V (θ)|2 − �V (θ) ≥ c > 0 is

satisfied for any large enough |θ |, see for instance [8,9]. Different results are also available for measures of the form
μ = e−V ν, where ν itself satisfies (2.2), the most simple instance being the Holley–Stroock [54] perturbation principle
C2[μ] ≤ exp{supV − infV }C2[ν]. See e.g. [6, Théorème 3.4.1] or [66]. Further statements in this direction are contained
in [23, Proposition 4.1], where it is assumed that μ satisfies the stronger log-Sobolev inequality.

2.2. A remarkable example: Exponential models

A useful rephrasing of the main results from Theorem 2.2 can be obtained, in Bayesian statistical inference, by considering
a statistical model in the following form:

(2.5) f (x|θ) = e�(x,θ)h(x), g(x, θ) = f (x|θ)

ρ(x)
= e�(x,θ)∫


e�(x,τ)π(dτ)

for some measurable functions h : X → (0,+∞) and � : X ×  → R. Here, π denotes the prior probability measure
and ρ(x) = h(x)

∫


e�(x,θ)π(dθ) > 0 for any x ∈ X. The function g in (2.5) is therefore obtained by applying the Bayes
formula. Under the formulation (2.5), the Fisher functional Jπ [g] defined in (2.1) can be formally rewritten as

(2.6) Jπ

[
g(z, ·)] =

(∫


∣∣�(z, θ)
∣∣2

g(z, θ)π(dθ)

) 1
2

, where �(x, θ) := ∇x�(x, θ) −
∫



∇x�(x, τ )g(x, τ )π(dτ).

It is worth noticing that the mapping θ �→ �(x, θ) satisfies the null-mean property, i.e.
∫


�(x, θ)g(x, θ)π(dθ) = 0
for any x ∈ X, which allows a further application of the Poincaré inequality (2.2). Therefore, Theorem 2.2–(iii) can be
revisited as follows.
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Corollary 2.3. Let � ∈ C1(X × ) be such that θ �→ ∇x�(x, θ) is Lipschitz, for any x ∈ X. Given a positive and
measurable function h : X → R, let f,g,� be defined by (2.5) and (2.6). If

∫


|θ |2g(x, θ)π(dθ) < +∞ holds for every
x ∈ X and

(2.7) K := ess sup
x∈X

(
C
[
g(x, ·)π)]

)2
(∫



∣∣∇θ�(x, θ)
∣∣2

g(x, θ)π(dθ)

) 1
2

< +∞,

then the probability kernel π(·|·), defined by (1.2) and (2.5), satisfies (1.1) with dP(Rd ) = W2 and L = K .

Proof. The regularity of � ensures that ∇x

∫


e�(x,θ)π(dθ) = ∫


e�(x,θ)∇x�(x, θ)π(dθ), and thanks to this property a
computation immediately shows that (2.6) holds for every x ∈ X. As already mentioned,

∫


�(x, θ)g(x, θ)π(dθ) = 0 for
any x ∈ X, thus an application of the Poincaré inequality (2.2) yields

C
[
g(x, ·)π]

Jπ

[
g(x, ·)] ≤ (

C
[
g(x, ·)π)]

)2
(∫



∣∣∇θ�(x, θ)
∣∣2

g(x, θ)π(dθ)

) 1
2

for every x ∈ X. The conclusion follows from Theorem 2.2–(iii). �

This corollary allows us to easily deal with statistical models f (·|·) belonging to the well-known exponential family.
See, e.g., [11,20] for a comprehensive treatment of the exponential family from the point of view of classical statistics, and
[32] for a Bayesian approach. For the canonical exponential family, we consider two measurable functions T : X → R

d

and h :X → (0,+∞). Upon putting  = {θ ∈R
d : ∫

X
eT (x)·θh(x)dx < +∞}, the function � assumes the form

(2.8) �(x, θ) = T (x) · θ − M(θ), with M(θ) := log
∫
X

eT (x)·θh(x)dx.

In addition, we recall the standard regularity conditions for the canonical exponential family:  is a nonempty open subset
of Rd and the interior of the convex hull of the support of h ◦ T −1 is assumed to be nonempty. Under such conditions
 proves to be convex, while M :  → R turns out to be strictly convex, analytic and steep (cf. Definition 3.2 of [20]).
These considerations allows further estimates on the Poincaré constant in (2.7), according to the discussion of Section 2.1.
Finally, if the function T belongs to C1

b(X;Rd), the integral term in (2.7) is formally re-written according to

(∫


∣∣∇θ�(x, θ)
∣∣2

g(x, θ)π(dθ)

) 1
2 = ∣∣∇T (x)

∣∣.
In this setting, we can further refine Corollary 2.3, thanks to the Bakry–Emery criterion (2.4), by stating the following

Proposition 2.4. Consider a statistical model from the exponential family with a Lipschitz-continuous T , h : X →
(0,+∞),  and M as above. Let π(dθ) = e−W(θ) dθ with W ∈ C2(). If Hess[M + W ] ≥ αI on  in the sense of
quadratic forms for some α > 0, and

∫


|θ |2 exp{T (x) · θ − M(θ) − W(θ)}dθ < +∞ for every x ∈ X, then the posterior
distribution π(·|·), defined by (1.2) and (2.5), satisfies (1.1) with distance W2 and K = Lip(T )/α.

Remark 2.5. Because of their frequent use in practical statistical context, the exponential family is often rewritten under
different re-parametrizations, both of the parameter and the data. Of course, property (1.1) depends crucially on the
specific parametrization, and can fail after a re-parametrization. For example, the re-parametrization of the parameter
in terms of the mean (see, for example, Chapter 3 of [20]) preserves the Lipschitz continuity if ∇M :  → R

d is itself
Lipschitz. Apropos of the re-parametrization of the data, very often the sufficient statistics T is itself viewed as the datum,
which leads to a simpler problem. See Section 3.1 below.

Remark 2.6. If  = R
d and α = 0 in Proposition 2.4, an alternative estimate of the W2-Lipschitz constant in (1.1) is

L ≤ 12
√

3Lip(T )Var(eM+V ), in view of an already recalled result by Bobkov [16]. Further variants can be obtained by
applying Proposition A.5 in the Appendix.

3. Applications

3.1. Statistical inference with n exchangeable observations

In concrete statistical applications, it is customary to consider the observed datum x as a vector (x1, . . . , xn) containing
the outcomes of n experiments. Accordingly, the space X mentioned in Section 1.1 becomes a product space, say X

n
1. In
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the Bayesian approach, the vector (x1, . . . , xn) is viewed as the realization of some random vector, say (X1, . . . ,Xn), and
the core of the analysis hinges on the stochastic dependence between the components of this random vector. In particular,
when the experiments are performed under “ideally similar physical conditions” the order in which the outcomes are
collected becomes irrelevant. This intuitive, practical observation is captured by the notion of exchangeability, introduced
by B. de Finetti. See [3] for a comprehensive reference on exchangeability, and Section 2.12 of [48] for a statistical
perspective.

Here, we illustrate how to apply our theory of Lipschitz-continuous kernels within the field of statistical inference with
n exchangeable observations, lending our results a more statistical flavour and giving a deeper insight into the concept of
“Bayesian well-posedness”. First, we recall that a sequence {Xi}i≥1 of X1-valued random variables, defined on (�,A ,P),
is exchangeable if the identity P[X1 ∈ A1, . . . ,Xn ∈ An] = P[X1 ∈ Aσn(1), . . . ,Xn ∈ Aσn(n)] is fulfilled for any n ∈ N,
permutation σn : {1, . . . , n} → {1, . . . , n} and A1, . . . ,An ∈ X1, where X1 is a σ -algebra on X1. Under fairly general
assumptions (e.g., when X1 is a Polish metric space and X1 coincides with its Borel σ -algebra), de Finetti’s representation
theorem states that the law of the observations can be written as P[X1 ∈ A1, . . . ,Xn ∈ An] = ∫

T
[∏n

i=1 ν(Ai |θ)]π(dθ),
where (T,T ) is a suitable measurable space (the parameter space), π is a prior p.m. on (T,T ), and ν : X1 ×T → [0,1]
is a kernel representing the statistical model for any single observation. If we suppose that the family {ν(·|θ)}θ∈T of
p.m.’s is dominated by some σ -finite measure λ1 on (X1,X1), with relative density f (·|θ), then, by resorting to the
Bayes formula (1.3), the posterior distribution of the random parameter given the observations can be written as

(3.1) πn(dθ |x1, . . . , xn) := [∏n
i=1 f (xi |θ)]π(dθ)∫

T
[∏n

i=1 f (xi |τ)]π(dτ)

for any (x1, . . . , xn) ∈ X
n
1 such that

∫
T
[∏n

i=1 f (xi |τ)]π(dτ) > 0. Moreover, from a classical perspective, the product∏n
i=1 f (xi |θ), when viewed as a function of θ , represents the likelihood function Ln(θ;x1, . . . , xn). Hence, with a view to

highlighting the role of our theory, we focus on the appealing situation in which there exists a classical sufficient statistics.
By the well-known Fisher–Neyman factorization criterion, we recall that a measurable mapping tn : (Xn

1,X n
1 ) → (S,S )

is named a classical sufficient statistics whenever there exist a measurable space (S,S ) and two measurable functions
g : S × T → [0,+∞) and h : Xn

1 → [0,+∞) such that Ln(θ;x1, . . . , xn) = g(tn(x1, . . . , xn); θ)h(x1, . . . , xn) holds for
every (x1, . . . , xn) ∈ X

n
1. We also notice that, in the exchangeable case, any classical sufficient statistics tn turns out to

be a symmetric function of x1, . . . , xn. A remarkable example is obtain when X1 is endowed with some metric structure
and the mapping x �→ f (x|θ) is continuous and positive for every θ ∈ T. In fact, (S,S ) can be chosen as the space of
all probability densities on (X1,X1, λ1), endowed with the topology of weak (narrow) convergence and ensuing Borel
σ -algebra S , and tn(x1, . . . , xn) as the empirical measure 1

n

∑n
i=1 δxi

. In this case, (3.1) can be rewritten by replacing
the product

∏n
i=1 f (xi |θ) with g(tn(x1, . . . , xn); θ) for any (x1, . . . , xn) ∈X

n
1 such that

∫
T

g(tn(x1, . . . , xn); τ)π(dτ) > 0.
This identity is crucial to notice that, in the case of n exchangeable observations, it seems more natural to investigate the
Lipschitz-continuity of the posterior distribution with respect to the variable tn, rather than the original vector (x1, . . . , xn).
Thus, a natural reformulation of (1.1) becomes

(3.2) dP(T)

(
πn(dθ |x1, . . . , xn),πn(dθ |y1, . . . , yn)

) ≤ KdS
(
tn(x1, . . . , xn), tn(y1, . . . , yn)

)
with some suitable distance dS on S. This reformulation is in harmony with the original assumption of exchangeability,
since the RHS of (3.2) is invariant after a permutation of the data (x1, . . . , xn) or (y1, . . . , yn), unlike the (product) distance
between (x1, . . . , xn) and (y1, . . . , yn), which is not preserved by permutation. As already noted in [27, Section 2.3] and
[28], these considerations provide a new geometrical perspective on the basic formulation of Bayesian inference.

To illustrate the last consideration, we restrict to the case in which the above density f (·|θ) has the exponential form
as in (2.5) and (2.8). Thus, under the same standard regularity conditions for  of Section 2.2, we can take T equal to .
In this framework, we have at our disposal the classical sufficient statistics tn(x1, . . . , xn) = 1

n

∑n
i=1 T (xi) which is an

element of the interior � of the convex hull of the support of h ◦ T −1. Indeed, we recall that ∇M :  → � is a smooth
diffeomorphism and θ̂n := (∇M)−1(tn(x1, . . . , xn)) coincides with the maximum likelihood estimator (MLE). Thus, we
will study the Lipschitz-continuity of the posterior distribution of the random parameter with respect to tn which, due to
the recalled relation with the MLE, establishes an interesting link between Bayesian and classical statistics.

Proposition 3.1. Consider a statistical model from the exponential family (2.5), with T : X1 → R
d , h : X1 → (0,+∞),

 and M as in Section 2.2. Let π(dθ) = e−W(θ) dθ with W ∈ C2(). If Hess[M] ≥ αI and Hess[W ] ≥ λ∗I on  in the
sense of quadratic forms, for some α > 0 and λ∗ ∈R, and∫



|θ |2 exp
{
n
[
tn(x1, . . . , xn) · θ − M(θ)

] − W(θ)
}

dθ < +∞



Lipschitz continuity of probability kernels in the optimal transport framework 1785

for every n ∈N and (x1, . . . , xn) ∈X
n
1, then the posterior πn(·|·) satisfies (3.2) for every n ≥ max{1,−λ∗/α}, with T = ,

dP(T) =W2, dS equal to the Euclidean distance on R
d , and K = n

nα+λ∗ . In addition, if ∇M is Lipschitz-continuous with
constant �, then

W2
(
πn(dθ |x1, . . . , xn),πn(dθ |y1, . . . , yn)

) ≤ n�

nα + λ∗
∣∣θ̂n(x1, . . . , xn) − θ̂n(y1, . . . , yn)

∣∣.
holds for every n ≥ max{1,−λ∗/α} and (x1, . . . , xn), (y1, . . . , yn) ∈ X

n
1.

Proof. We just notice that the function � of Section 2.2 becomes �(tn, θ) = n[tn −M(θ)], and apply Proposition 2.4. �

3.2. Approximation of posterior distributions by mixtures

This subsection is referred to the setting of Section 1.1-1.2, with the further assumption that (X,dX) is totally bounded.
A joint p.m. γ is given on (X×R

d,X ⊗ B(Rd)), with first marginal χ . The probability kernel π(·|·) : B(Rd) ×X →
[0,1] is thought of as a distinguished solution of the disintegration problem, that is

∫
A

π(B|x)χ(dx) = γ (A × B) for any
A ∈ X and B ∈ B(Rd). For simplicity, we assume that the support of χ coincides with the whole of X. Now, we briefly
describe an approximation procedure due to Renyi [75]. See also [71,74] and references therein. Fix ε > 0 arbitrarily. By
total boundedness, there is a finite partition of X, denoted by {A1, . . . ,Ak(ε)}, satisfying

(i) Ai ∩ Aj =∅, for every i, j ∈ {1, . . . , k(ε)} with i 
= j

(ii)
⋃k(ε)

j=1 Aj =X

(iii) χ(Aj ) > 0 for every j ∈ {1, . . . , k(ε)}
(iv) χ(∂Aj ) = 0 for every j ∈ {1, . . . , k(ε)}
(v) diam(Aj ) ≤ ε.

The number k(ε) is usually referred to as the ε-covering number of (X,dX), and it is related to the dimension of X. We
consider the following approximation of π(·|·), given by

πε(B|x) :=
k(ε)∑
j=1

γ (Aj × B)

χ(Aj )
1Aj

(x)

for any B ∈ B(Rd) and x ∈X. Finally, we endow the space P(Rd) of all p.m.’s on (Rd ,B(Rd)) with the Borel σ -algebra
P(Rd) originated by the weak convergence of p.m.’s. We have the following

Proposition 3.2. Let ε > 0 and {A1, . . . ,Ak(ε)} be given as above. Let dP(Rd ) be any distance which is convex and
P(Rd) ⊗ P(Rd) \ B([0,+∞))-measurable. Let the kernel π(·|·) satisfy (1.1) with such distance dP(Rd ). Then,

(3.3) dP(Rd )

(
π(·|x),πε(·|x)

) ≤ Lε, ∀x ∈X.

Proof. Fix x ∈ X. Then, x ∈ Aj(x) for some j (x) ∈ {1, . . . , k(ε)} and πε(·|x) = 1
χ(Aj(x))

∫
Aj(x)

π(·|y)χ(dy). Since

π(·|x) = 1
χ(Aj(x))

∫
Aj(x)

π(·|x)χ(dy), exploit the convexity of dP(Rd ) to obtain

dP(Rd )

(
π(·|x),πε(·|x)

) ≤ 1

χ(Aj(x))

∫
Aj(x)

dP(Rd )

(
π(·|x),π(·|y)

)
χ(dy).

Combination of this last inequality with (1.1) leads immediately to (3.3). �

The above proposition can be used to tackle the following question, which occurs very frequently in Bayesian infer-
ence. See [74] and [63] for formalizations within the Bayesian nonparametric setting and the parametric setting obtained
by the classical exponential family, respectively. Let ν(·|·) : X × R

d → [0,1] be a probability kernel representing the
statistical model, not necessarily dominated. Given some prior π on (Rd ,B(Rd)), suppose that the posterior is not com-
putable in a closed form, so that very little can be said beyond its existence. This phenomenon usually happens in a semi-
parametric or nonparametric setting. In any case, π can be well approximated by mixtures of the form

∑N
j=1 λjπj , where

π1, . . . , πN are prior measures on (Rd ,B(Rd)), usually belonging to some distinguished class, and λ1, . . . , λN ∈ [0,1]
with

∑N
j=1 λj = 1. Now, assume that the posterior πj (·|·) : B(Rd) × X → [0,1], relative to the prior πj , is actually
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computable in a closed form. Thus, it can be shown that the posterior π∗(·|·) : B(Rd) ×X → [0,1], relative to the prior∑N
j=1 λjπj , is equal to

π∗(·|x) = λj (x)πj (·|x) with λj (x) := λj

∫
Rd f (x|τ)πj (dτ)∑N

i=1 λi

∫
Rd f (x|τ)πi(dτ)

.

Following [63,74], we observe that the above Proposition 3.2 can be used to compute the degree of approximation of the
true posterior π(·|·) by π∗(·|·), uniformly with respect to the observed value x. For instance, our Proposition 3.2 improves
on Proposition 2 of [74] by providing an explicit rate of convergence.

3.3. Bayesian consistency

In the problem of consistency, we start by considering a sequence of exchangeable observations, say {Xi}i≥1, whose
probability distribution is given by the identity P[X1 ∈ A1, . . . ,Xn ∈ An] = ∫

T
[∏n

i=1 ν(Ai |θ)]π(dθ), as explained in Sec-
tion 3.1. In this subsection, we confine ourselves to case of real-valued Xi ’s, so that A1, . . . ,An ∈ B(R), with reference
measure λ1 = L1. Moreover, we let  be an open subset of Rd , and π a p.m. with support equal to  with π(∂) = 0.
Hence, the above space T coincides with . Lastly, we suppose that, for all θ ∈ , ν(·|θ) is absolutely continuous with
respect to λ1 with density f (·|·) > 0, and that the mapping x �→ f (x|θ) is continuous. In this framework, the posterior
distribution is given by the Bayes formula (3.1), while the likelihood can be written as exp{n ∫

R
logf (y|θ)exn(dy)} where

x = (x1, . . . , xn) ∈ R
n and exn(·) := 1

n

∑n
i=1 δxi

(·) denotes the empirical measure. In the theory of Bayesian consistency,
one fixes θ0 ∈  and generates a sequence {ξi}i≥1 of i.i.d. random variables from the p.m. ν(·|θ0) given by the density
f (·|θ0). The objective is to prove that the posterior piles up near the true value θ0, i.e. that πn(U

c
0 |ξ1, . . . , ξn) → 0 as

n → ∞ for every neighborhood U0 ∈ B() of θ0, where convergence is intended in probability. See [31] and [48, Chap-
ter 4] for foundational motivations. Now, with the help of the theory developed in this paper, we are able to provide a
posterior contraction rate at θ0, i.e. a sequence {εn}n∈N of positive numbers for which

(3.4) πn

({
θ ∈  : |θ − θ0| ≥ Mnεn

}|ξ1, . . . , ξn

) P−→ 0, as n → ∞,

holds for every diverging sequence {Mn}n≥1 of positive numbers, where
P−→ denotes convergence in probability.

Cfr. Definition 8.1 in [47]. Now, we further assume that both ν(·|θ0) and ν1(·) belong to P1(R), where ν1(A) :=∫
A

∫


f (x|θ)dxπ(dθ). Thus, we can put

(3.5) εn = E
[
W1

(
πn(dθ |ξ1, . . . , ξn); δθ0

)]
and notice that this choice actually provides a posterior contraction rate at θ0, highlighting the relevant role played by the
Wasserstein distance in this theory. In fact, an application of the Markov inequality yields

πn

({
θ ∈  : |θ − θ0| ≥ Mnεn

}|ξ1, . . . , ξn

) ≤ 1

Mnεn

W1
(
πn(dθ |ξ1, . . . , ξn); δθ0

)
and the conclusion displayed in (3.4) follows by taking expectation of both sides of the above inequality, after recalling
the suitable choice of εn made in (3.5), Now, for any distribution function F on R, we introduce the probability kernel

π∗
n (dθ |F) := exp{n ∫

R
logf (y|θ)dF(y)}∫


exp{n ∫

R
logf (y|t)dF(y)}π(dt)

π(dθ) = exp{n ∫ 1
0 logf (F−1(u)|θ)du}∫


exp{n ∫ 1

0 logf (F−1(u)|t)du}π(dt)
π(dθ),

where, in the first line, integrals on R are intended in Riemann–Stieltjes sense, while, in the second line, F−1(u) :=
inf{y ∈ R|F(y) ≥ u}. In this notation, we have πn(dθ |x) = π∗

n (dθ |F̂ x
n ), where F̂ x

n (y) := 1
n

∑n
i=1 1[xi ,+∞)(y) denotes

the empirical distribution function. Thanks to the triangle inequality for the Wasserstein distance, we can provide the
following useful bound for the expression of εn given in (3.5), namely

εn ≤ W1
(
π∗

n (dθ |F0); δθ0

) + E
[
W1

(
π∗

n (dθ |F0);π∗
n

(
dθ |F̂ ξ

n

))]
,

where F0(y) := ∫ y

−∞ f (x|θ0)dx and F̂
ξ
n (y) := 1

n

∑n
i=1 1[ξi ,+∞)(y). Apropos of the former term on the above RHS, we

notice that W1(π
∗
n (dθ |F0); δθ0) = ∫


|θ − θ0|π∗

n (dθ |F0). Then, combining the definitions of Kullback–Leibler divergence
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K(θ |θ0) := ∫
R

log(
f (y|θ0)
f (y|θ)

)f (y|θ0)dy with that of π∗
n (dθ |F0), we can write

W1
(
π∗

n (dθ |F0); δθ0

) =
∫


|θ − θ0|e−nK(θ |θ0)π(dθ)∫


e−nK(θ |θ0)π(dθ)
.

Here, we confine ourselves to dealing with regular models (Cfr. [43, Chapter 18]), meaning that the Fisher information
matrix I[θ0] at θ0, given by

I[θ0] :=
(

−
∫
R

[
∂2

∂θi∂θi

f (x|θ)

]
θ=θ0

f (x|θ0)dx

)
ij

is strictly positive definite. Thus, with the quadratic form notation as in (2.4), we have that K(θ |θ0) = 1
2 〈I[θ0](θ −θ0), (θ −

θ0)〉 + o(|θ − θ0|2) as θ → θ0, and that inf{K(θ |θ0)|θ ∈ , |θ − θ0| ≥ ε} > 0 for all sufficiently small ε > 0. Now, an
application of Theorem 41 in [19] shows that

∫


e−nK(θ |θ0)π(dθ) ∼
(

2π

n

)d/2 1√
I[θ0] ,

while Theorem 43 of the same reference gives

∫


|θ − θ0|e−nK(θ |θ0)π(dθ) ∼
(

2

n

)(d+1)/2 1

2
�

(
d + 1

2

)∫
Sd−1(〈I[θ0]−1z, z〉)1/2 dσ(z)√

I[θ0] ,

where S
d−1 stands for the surface of the ball of radius equal to 1 and centered at the origin of Rd . In conclusion, for

regular models, we get W1(π
∗
n (dθ |F0); δθ0) ∼ 1√

n
as n → +∞. At this stage, if we were able to show that the mapping

F �→ π∗
n (dθ |F) is Lipschitz-continuous, in the sense that

(3.6) W1
(
π∗

n (dθ |F1);π∗
n (dθ |F2)

) ≤ L(f,π)W2(μ1;μ2)

with μi((−∞, y]) = Fi(y) for i = 1,2, for some constant L(f,π) ≥ 0 independent of n, then we would conclude that

E
[
W1

(
π∗

n (dθ |F0);π∗
n

(
dθ |F̂ ξ

n

))] ≤ L(f,π)E
[
W2

(
eξn;ν(·|θ0)

)]
,

establishing in this way a very interesting connection. In fact, the term E[W2(e
ξ
n;ν(·|θ0))] is well-known in the proba-

bilistic literature as speed of mean Glivenko–Cantelli convergence, or monopartite matching problem. See, for example,
[17,36,45]. In particular, for one-dimensional distributions, if ν(·|θ0) ∈ P2(R) satisfies also

(3.7)
∫
R

ν((−∞, x]|θ0)ν((x,+∞)|θ0)

f (x|θ0)
dx < +∞

we have E[W2(e
ξ
n;ν(·|θ0))] ∼ 1√

n
as n → +∞, which again represent the optimal rate. Cfr. [17, Theorem 5.1].

To prove (3.6), we bring the theory developed in Section 2 into the game. We start from a well-known identity by
Dall’Aglio, according to which

W2(μ1,μ2) = ∥∥F−1
1 − F−1

2

∥∥
L2(0,1)

:=
(∫ 1

0

∣∣F−1
1 (u) − F−1

2 (u)
∣∣2 du

)1/2

.

Thanks to this fact, we can apply point (ii) or (iii) of Theorem 2.2—or, more precisely, their infinite-dimensional refor-
mulations, stated as point (ii) or (iii) of Theorem 4.5 below, with V= L2(0,1),

(3.8) X= {
H : (0,1) → R|H(u) = inf

{
y ∈ R|μ((−∞, y]) ≥ u

}
for some μ ∈ P2(R)

}
and

gn(H, θ) := exp{n ∫ 1
0 logf (H(u)|θ)du}∫


exp{n ∫ 1

0 logf (H(u)|t)du}π(dt)
= en�(H,θ)∫


en�(H,t)π(dt)

, H ∈ X,
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where �(H,θ) := ∫ 1
0 logf (H(u)|θ)du. Indeed, we notice that π∗

n (dθ |F) = gn(F
−1, θ)π(dθ) for any distribution func-

tion F with F−1 ∈ L2(0,1). We show an explicit solution based on Theorem 4.5–(iii). The evaluation of the Fisher
functional starts from the evaluation of the Gateaux derivative of the mapping H �→ gn(H, θ), namely

∇H gn(H, θ) = n
∇H �(H,θ)en�(H,θ)(

∫


en�(H,t)π(dt)) − en�(H,θ)(
∫


∇H �(H, t)en�(H,t)π(dt))

(
∫


en�(H,t)π(dt))2

= ngn(H, θ)

[
∇H �(H,θ) −

∫


∇H �(H, t)gn(H, t)π(dt)

]
.

This computation yields

Jπ

[
g(H, ·)] = n

(∫


∥∥∥∥∇H �(H,θ) −
∫



∇H �(H, t)gn(·, t)π(dt)

∥∥∥∥
2

L2(0,1)

gn(H, θ)π(dθ)

)1/2

.

Moreover, we notice that 〈∇H �(H,θ),�〉L2(0,1) = ∫ 1
0

∂xf (H(u)|θ)
f (H(u)|θ)

�(u)du which, by resorting once again to the Poincaré
inequality, entails

(∫


∥∥∥∥∇H �(H,θ) −
∫



∇H �(H, t)gn(·, t)π(dt)

∥∥∥∥
2

L2(0,1)

gn(H, θ)π(dθ)

)1/2

≤ C
[
gn(H, θ)π(dθ)

](∫


∥∥∥∥∇H

∂xf (H(·)|θ)

f (H(·)|θ)

∥∥∥∥
2

L2(0,1)

gn(H, θ)π(dθ)

)1/2

.

We assume that the following scaling estimate holds

(3.9) C2[gn(H, ·)π(·)] ≤ C̃(H ;f,π)

n
,

where C̃(H ;f,π) is a constant independent of n. Finally, we define

E(H ;f,π) :=
(

sup
n∈N

∫


∥∥∥∥∇H

∂xf (H(·)|θ)

f (H(·)|θ)

∥∥∥∥
2

L2(0,1)

gn(H, θ)π(dθ)

)1/2

and L(f ;π) := supH∈L2(0,1) C̃(H ;f,π)E(H ;f,π). We can now condense this line of reasoning in the following

Theorem 3.3. Suppose that:

(i) f (x|θ) > 0 for all (x, θ) ∈ R×  and x �→ f (x|θ) ∈ C2(R) for all θ ∈ ;
(ii) ν1(·) ∈P2(R), where ν1(A) := ∫

A

∫


f (x|θ)dxπ(dθ);
(iii) for fixed θ0 ∈ , {f (·|θ)}θ∈ defines a C2-regular model at θ0, as stated, e.g., in [43, Chapter 18];
(iv) ν(·|θ0) ∈P2(R) satisfies (3.7);
(v) ∇H

∂xf (H(·)|θ0)
f (H(·)|θ0)

∈ L2(0,1) for any H ∈X, where X is defined by (3.8);

(vi) there exists C̃(H ;f,π) such that Poincaré constant of the posterior satisfies the bound (3.9) for any n ∈ N;
(vii) L(f ;π) < +∞.

Then the posterior is consistent at θ0, with the optimal posterior rate 1/
√

n.

The validity of the estimate (3.9), which is here an assumption, is natural under suitable conditions like the ones
in Proposition A.5 in the Appendix. The above assumptions (vi)–(vii) are therefore a rephrasing of the assumption in
Theorem 4.5–(iii), which is stated later in Section 4 (as a generalization of Theorem 2.2–(iii)) and can be invoked for
proving Theorem 3.3. For extensions and sharpening of this approach to Bayesian consistency and of Theorem 3.3,
including rigorous proofs, we refer to the recent contribution [34], where we also show novel applications.
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4. Some extensions and other new results

4.1. Wasserstein distance: The PDE approach

Here, we briefly describe the techniques we shall exploit when considering the 2-Wasserstein distance, in order to establish
(1.1) under Assumptions 2.1 for a probability kernel of the form (1.2) and such that π(·|x) has finite second moment for
any x ∈ X. Indeed, it will be convenient to take advantage of the following dynamical formulation and to resort to the
ensuing PDE approach.

Letting C∞
c () denote the space of restrictions to  of C∞

c (Rd) functions, the dynamic formulation of the 2-
Wasserstein distance is based on the continuity equation

(4.1)
d

dt

∫


ψ(θ)μt (dθ) =
∫



〈∇ψ(θ),wt (θ)
〉
μt(dθ) ∀ψ ∈ C∞

c (),

where [0,1] � t �→ μt ∈P2() is a narrowly continuous curve and  � θ �→ wt (θ) ∈ is a time-dependent velocity vector
field. The Benamou–Brenier formula [13] asserts that the Wasserstein distance between μ0 and μ1 can be computed as

W2(μ0,μ1) = inf
∫ 1

0

(∫


∣∣wt (θ)
∣∣2

μt(dθ)

) 1
2

dt,

where the infimum is taken among all narrowly continuous curves from μ0 to μ1 in P2() and all Borel functions
[0,1] ×  � (t, θ) �→ wt (θ) ∈ R

d such that wt ∈ L2
μt

(;Rd) for a.e. t ∈ (0,1) and such that (4.1) holds.

By looking at the map x �→ π(·|x) ∈ P2() associated to a probability kernel in the form (1.2), let us fix two points
x1, x2 ∈ X. We notice that a continuous curve [0,1] � t �→ αx1,x2(t) ∈X such that αx1,x2(0) = x1, αx1,x2(1) = x2, naturally
induces a curve on P2() defined by

[0,1] � t �→ π
(·|αx1,x2(t)

) ∈ P2().

We use this curve for bounding the Wasserstein distance, as the computation of associated velocity vector fields wx1,x2
t

yields a direct estimate by means of the Benamou–Brenier formula. Indeed, if the vector field wx1,x2
t ∈ L2

π(·|αx1,x2 (t))()

satisfies the continuity equation in coupling with the curve π(·|αx1,x2(t)), for every fixed x1, x2 ∈ X, then the Benamou–
Brenier formula entails

W2
(
π(·|x1),π(·|x2)

) ≤
∫ 1

0

(∫


∣∣wx1,x2
t (t, θ)

∣∣2
π

(
dθ |αx1,x2(t)

)) 1
2

dt.

Therefore, if we can further prove that K ≥ 0 exist such that

(4.2)
∫ 1

0

(∫


∣∣wx1,x2
t (t, θ)

∣∣2
π

(
dθ |αx1,x2(t)

)) 1
2

dt ≤ K|x1 − x2|,

then we obtain (1.1) with the W2 distance and L = K . In this regard, if αx1,x2(t) is chosen to be a line segment, the
velocity vector field scales as |α′

x1,x2
(t)| = |x1 −x2|. Henceforth, we restrict indeed to the case of the line segment (which

is related to the choice of X as a convex set), that is, we let

(4.3) αx1,x2(t) = sx1,x2(t) := (1 − t)x1 + tx2, x1, x2 ∈X, t ∈ [0,1].
In order to obtain an estimate like (4.2), taking account of the time-scaling induced by the choice (4.3), we analyze the

dual norm

(4.4) sup

{
∂ν

∫


ψ(θ)π(dθ |x) : ψ ∈ C∞
c (),

∫


∣∣∇ψ(θ)
∣∣2

π(dθ |x) ≤ 1

}
,

where x ∈ X, ν is a unit vector in R
m and ∂ν denotes the associated directional derivative. We note that (4.4) is the dual

expression of the L2
π(·|x)() norm of the solution wν

x to

(4.5) ∂ν

∫


ψ(θ)π(dθ |x) =
∫



〈
wν

x(θ),∇ψ(θ)
〉
π(dθ |x) ∀ψ ∈ C∞

c ().
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For x = sx1,x2(t) and ν = x2−x1|x2−x1| , we get indeed wx1,x2
t = |x2 − x1|wν

x . Therefore, a crucial step towards the desired
estimate (4.2) will be an estimate for the norm (4.4). Indeed, if ‖wν

x‖L2
π(·|x)

() ≤ K for some constant K that is independent

of x and ν, then (4.2) holds.
It is natural to look for a solution to (4.5) in the form of a gradient vector field wν

x = ∇uν
x , thus providing optimality

of the L2
π(·|x) norm (as we detail in Section 5.1). Therefore, by recalling the general form (1.2) of the probability kernel,

we formally interpret equation (4.5) as a family of degenerate elliptic problems (where we write gx(·) = g(x, ·), hinting
at the fact that here x ∈ X plays the role of parameter)

(4.6)

{
−div

(
gxπ∇uν

x

) = ∂νgxπ in ,

gx∇ux · n = 0 on ∂,

where n denotes the normal to the boundary.
Existence, regularity and estimation of weak solutions to degenerate elliptic equations (see [40,41]) are related to the

validity of a weighted Poincaré inequality such as (2.2), the weights being given here by the p.m.’s π(·|x) as x varies in
X. In view of the above discussion, the result in Theorem 2.2–(iii) has a clear PDE interpretation: g ∈ L1

π (;W 1,1
loc (X)) is

a regularity assumption that allows to take the ∂ν -derivative under the integral sign in (4.5), while the condition involving
both the Poincaré constant and the Fisher functional appears as an estimate of the solution to (4.6). A similar interpretation
holds for Theorem 2.2–(iv).

4.2. Estimates of W2 on moving domains

Also in this subsection, we keep the mathematical setting of Assumptions 2.1 and we confine ourselves to treating kernels
of the form (1.2). We provide two other results, in which we get rid of the positivity restriction on g appearing in Theorem
2.2–(iii) and of the Sobolev assumption on g in the x variable. This task requires the introduction of some new notation,
along with the assumption that π admits a density q with respect to the Lebesgue measure Ld . Thus, without loss of
generality, we fix π = Ld ¬

 in (1.2), throughout this subsection. For Lm-a.e. x ∈ X, we assume that x := {g(x, ·) > 0}
is, up to a Ld -null set, an open connected subset of  with locally Lipschitz boundary. Moreover, for any direction
ν ∈ S

m−1, we consider the following Neumann boundary value problem

(4.7)

{
−div

(
gx∇uν

x

) = ∂νg̃x in x,

gx∇uν
x · nx = gxVν

x · nx on ∂x,

where gx is a shorthand for g(x, ·) and nx denotes the exterior unit normal to ∂x . This problem represents of course a
generalization of (4.6). The map (X,) � (x, θ) �→ g̃(x, θ) = g̃x(θ) is a Sobolev map extending g(x, ·) to the whole of
, while ∂ν denotes the derivative in the direction ν ∈ S

m−1. More precisely, we assume that there exists g̃ ∈ L1
loc(X×)

such that g̃ ∈ W 1,1(X̃ × ) for any open set X̃ compactly contained in X and such that g(x, θ) = g̃(x, θ)1x (θ) for
(Lm ⊗ Ld)-a.e. (x, θ) ∈ X × . We note this extension guarantees that the right hand side in the first equation of (4.7)
belongs to L1(x) for Lm-a.e. x ∈ X. Moreover, Vν

x : x → R
d is the vector field representing the velocity of x in ,

when the parameter x varies along the ν direction. Here, x is assumed to be the image of a reference connected open
set with locally Lipschitz boundary, say ∗ ⊂ R

d , through �x , where {�x}x∈X is a smooth family of diffeomorphisms.
In such a case, we say that the positivity set of g(x, ·) varies according to a X-regular motion. The detailed notion of
X-regular motion will be given in Definition 5.8, in Section 5.2. Then, we put Vν

x = ∂ν�x ◦ �−1
x and we introduce the

notation Vx for the matrix ∇x�x ◦ �−1
x . If g ∈ L1

loc(X × ) satisfies all the above conditions, we say that g admits a
regular extension. Again, a detailed notion of regular extension will be given in Definition 5.9, in Section 5.2.

The way is now paved for the formulation of a first abstract result, where we refer to weak solutions to problem (4.7).
For clarity, a weak solution uν

x is defined in the usual way, through integration by parts, as an element of the weighted
Sobolev space H 1(x,gx). See Definition 5.5 below.

Theorem 4.1. Let π(·|·) be a kernel in the form (1.2), with π = Ld ¬
 and with g ∈ L1

loc(X × ) admitting a regular
extension and satisfying

∫


|θ |2g(x, θ) dθ < +∞ for Lm-a.e. x ∈ X. For any ν ∈ S
m−1, suppose there exists a weak

solution uν
x ∈ H 1(x,gx) to the problem (4.7), for Lm−1-a.e. x ∈ X, and that

(4.8) K := sup
ν∈Sm−1

ess sup
x∈X

(∫
x

∣∣∇uν
x(θ)

∣∣2
g(x, θ)dθ

)1/2

< +∞.

Then, there exists a W2-Lipschitz version of π(·|·) satisfying (1.1) with L = K .
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The next theorem will provide an estimate of the solution to problem (4.7). For a kernel π(·|·) in the form (1.2) with
π = Ld ¬

, we will use the shorthand C[g(x, ·)] to denote the Poincaré constant of the p.m. g(x, ·)Ld ¬
 on (,T ).

Denoting as usual by ∇x the gradient in the x-variable and by ∇ the gradient in the θ -variable, we introduce the Fisher
functionals associated to (the regular extension of) g as

(4.9) J1
[
g̃(x, ·)] :=

(∫
x

|∇xg̃(x, θ)|2
g̃(x, θ)

dθ

) 1
2

, J2
[
g̃(x, ·)] :=

(∫
x

|∇g̃(x, θ)|2
g̃(x, θ)

dθ

) 1
2

.

Theorem 4.2. Let π(·|·) be a kernel in the form (1.2), with π = Ld ¬
 and with g ∈ L1

loc(X × ) admitting a regular
extension g̃ and satisfying

∫


|θ |2g(x, θ)dθ < +∞ for Lm-a.e. x ∈X. If

K := ess sup
x∈X

{∥∥Vx(·)
∥∥

W 1,∞(x)

(
1 + C

[
g(x, ·)](1 +J2

[
g̃(x, ·)])) + C

[
g(x, ·)]J1

[
g̃(x, ·)]} < +∞

is valid, then there exists a W2-Lipschitz version of π(·|·) satisfying (1.1) with L = K .

In the derivation of (4.7) from the continuity equation (see Section 5), we handle the derivative of the integral on
the left-hand side of (4.5) by making use of the Reynolds transport formula from continuum mechanics (see Lemma
A.1 in the Appendix). This explains the role of the vector Vν

x = ∂ν�x ◦ �−1
x that represents the spatial velocity, defined

on the deformed configuration x , whereas ∗ is the reference configuration. This approach is, in a sense, alternative
(although less general) to the optimal transport formalism and the Monge–Ampere equation, but suitable to the statistical
framework, where probability densities are often defined by truncation. In this context, the extension map g̃x(·) is actually
given a-priori, as in the examples dealing with Pareto-type statistical models, in Section 4.3. Of course, if x =  for
Lm-a.e. x ∈X, Theorem 4.2 is reduced to a particular instance of Theorem 2.2–(iii), as problem (4.7) is reduced to (4.6).

4.3. A remarkable example: Pareto statistical models

Pareto statistical models, which are considered in the next two propositions, provide a paradigmatic application of Theo-
rem 4.1, as they gives rise to a moving support of probability densities that are defined by truncation.

Proposition 4.3. Consider the one-dimensional Pareto statistical model

X= (1,+∞),  = (1, θ0), θ0 ∈ (1,+∞], f (x|θ) = θ

x2
1{θ < x}.

Suppose we are given a prior distribution π , whose support is , admitting a density q ∈ L1(), and let Q(θ) := θq(θ).
Assume further that Q ∈ W 1,1() and 1/Q ∈ L1(), and let CQ(θ) := Q(θ)(

∫ θ

1 Q(τ) dτ)−1/2(
∫ θ

1
dτ

Q(τ)
)1/2. Then the

posterior distribution π(·|·), defined by means of (1.2) and (1.3), satisfies (1.1) with distance W2 and L = K , where
K := supx∈X CQ(x ∧ θ0).

Proof. We give the proof in case θ0 = +∞ (minor variants are required if θ0 < +∞). The proof is a direct application
of Theorem 4.1. With respect to the notation therein, we drop the apex ν as the directional derivative is reduced to the
derivative in the x-variable. We have by Bayes formula (1.3)

ρ(x) = 1

x2

∫ x

1
Q(τ)dτ, gx(θ) = f (x|θ)q(θ)

ρ(x)
= Q(θ)∫ x

1 Q(τ)dτ
1{θ < z},

so that x = (1, x) is the positivity set of gx . It is clear that the function X×  � (x, θ) �→ gx(θ) satisfies
∫


gx(θ)dθ =
1 and

∫


θ2g(x, θ)dθ < +∞ for every x ∈ X. Moreover, as required by Theorem 4.1, it admits a regular extension
according to Definition 5.9 which is found later in Section 5.3. Indeed, we may define �x(·) : ∗ → x by ∗ = (1,2)

and �x(θ) = (θ − 1)(x − 1)+ 1. As a consequence, we have ∂x�x ◦ (�x)
−1(θ) = θ−1

x−1 and �x(θ) satisfies the conditions
of Definition 5.8. Moreover, we may consider the natural extension

g̃x(θ) := Q(θ)∫ x

1 Q(τ)dτ
, x ∈ (1,+∞), θ ∈ (1,+∞).
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By the assumptions on q , the map (t, θ) �→ g̃t (θ) belongs to W 1,1((α,β) × ) for any 1 < α < β < +∞. It is indeed a
regular extension in the sense of Definition 5.9. Therefore, problem (4.7) is reduced to

(4.10)

⎧⎪⎨
⎪⎩

−(
gxu

′
x

)′ = ∂xg̃x in (1, x),

gx(x)u′
x(x) = gx(x),

gx(1)ux(1) = 0,

where the ′ stands for the derivative in the θ variable. By taking into account that ∂xg̃x(θ) = −Q(θ)Q(x)(
∫ x

1 Q(τ)dτ)−2,
the solution ux to problem (4.10) satisfies for any x ∈ (1,+∞)

u′
x(θ) = Q(x)

Q(θ)

(∫ x

1
Q(τ)dτ

)−1 ∫ θ

1
Q(τ)dτ.

We obtain (∫ x

1

∣∣u′
x(θ)

∣∣2
gx(θ)dθ

)1/2

≤ Q(x)

(∫ x

1
Q(τ)dτ

)−1/2(∫ x

1

dτ

Q(τ)

)1/2

= CQ(x).

By the assumptions on q it easily follows that CQ(x) is bounded on X, so that the assumptions of Theorem 4.1 are
satisfied, thus we conclude by taking supx∈X CQ(x) as bound for the Lipschitz constant. �

Proposition 4.4. Let us consider the statistical model

X= (1,+∞), (θ, ε) ∈  = (1,2)2, f (x|θ, ε) = εθε

x1+ε
1{θ < x}

along with a prior probability density q ∈ C2() such that 0 < cq ≤ q(θ, ε) for any (θ, ε) ∈ . Then there exists an
explicit positive constant Zq , only depending on cq and ‖q‖2 := sup q +sup |∇q|+sup |∇2q|, such that the posterior
distribution satisfies (1.1) with distance W2 and L = Zq .

Proof. We first look at the values of x ∈ (1,2]. Let Cq := sup q . A comuptation shows that for θ ∈ (1,2), ε ∈ (1,2),

gx(θ, ε) = f (θ, ε|x)q(θ, ε)

ρ(x)
= εθεq(θ, ε)1{θ < x}(θ, ε)

xε+1ρ(x)
, where ρ(x) =

∫ x

1

∫ 2

1

στσ+1

xσ+1
q(τ, σ )dσ dτ.

An easy estimate shows that for any x ∈ [1,2]
(4.11) 8Cq(x − 1) ≥ ρ(x) ≥ cq(x − 1),

∣∣ρ′(x)
∣∣ ≤ 26Cq, and

∣∣ρ′(x)
∣∣ + ∣∣ρ′′(x)

∣∣ + ∣∣ρ′′′(x)
∣∣ ≤ M‖q‖2,

where M is a suitable numerical constant. Moreover

g̃x(θ, ε) = εθεq(θ, ε)

xε+1ρ(x)
and ∂xg̃x(θ, ε) = −Ax(ε)θ

εq(θ, ε), where Ax(ε) := ε(ε + 1)

xε+2ρ(x)
+ ερ′(x)

xε+1ρ2(x)
,

so that from (4.11) we deduce that there exists a positive constant Kq , depending only on cq and Cq , such that

(4.12)
∣∣Ax(ε)

∣∣ ≤ Kq

(x − 1)2
for any ε ∈ (1,2) and any x ∈ (1,2].

We see that the map (x, θ, ε) �→ g̃x(θ, ε) belongs to W 1,1((α,β) × (1,2) × (1,2)) for any 1 < α < β < 2. Moreover, for
any x ∈ (1,2) the map (θ, ε) �→ ∂xg̃x(θ, ε) belongs to L1(x) where x := (1, x) × (1,2) = �x(2) and �x(θ, ε) =
((θ − 1)(x − 1) + 1, ε) has first component as in the proof of Proposition 4.3. In this way, we see that indeed (x, θ, ε) �→
g̃x(θ, ε) is a regular extension of the function (x, θ, ε) �→ gx(θ, ε) on (1,2) × , according to Definition 5.9. In order
to conclude, we apply Theorem 4.1. The corresponding Neumann boundary value problem is posed on a rectangle, and
precisely it is (again we drop the apex ν as X is one-dimensional)⎧⎪⎨

⎪⎩
−div(gx∇ux) = ∂xg̃x in x,

∂θux = 1 on �x := {x} × (1,2),

∇ux · nx = 0 on ∂x \ �x.
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We define Gx(θ, ε) := ∫ θ

1 ∂xg̃x(τ, ε)dτ = −Ax(ε)
∫ θ

1 τ εq(τ, ε)dτ , and we proceed with the estimate of the H 1(x,gx)

norm of ux by duality and using the notion of weak solution to the above problem (see Definition 5.5). We obtain after an
integration by parts in the θ -variable∫

x

|∇ux |2gx = sup
‖ψ‖x=1

∫
x

∇ux · ∇ψgx = sup
‖ψ‖x=1

(∫
x

ψ(θ, ε)∂xg̃x(θ, ε)dθ dε +
∫ 2

1
ψ(x, ε)gx(x, ε)dε

)

= sup
‖ψ‖x=1

(∫
x

−∂θψ(θ, ε)Gx(θ, ε)dθ dε +
∫ 2

1
ψ(x, ε)

(
Gx(x, ε) + gx(x, ε)

)
dε

)
,

where the supremum is taken among test functions ψ ∈ C1
gx

(x) and ‖ψ‖x is a shorthand for the norm (
∫
x

|∇ψ |2gx)
1/2

on C1
gx

(x). Therefore, with the notation Hx(ε) := Gx(x, ε) + gx(x, ε) and with the divergence theorem we obtain

∫
x

|∇ux |2gx = sup
‖ψ‖x=1

(∫
x

−Gx(θ, ε)∂θψ(θ, ε)dθ dε +
∫

x

div

(
ψ(θ, ε)

θ − 1

x − 1

(
Hx(ε),0

))
dθ dε

)

= sup
‖ψ‖x=1

(∫
x

∂θψ

(
θ − 1

x − 1
Hx(ε) − Gx(θ, ε)

)
dθ dε +

∫
x

ψ(θ, ε)Hx(ε)

x − 1
dθ dε

)

≤ sup
‖ψ‖x=1

(∫
x

∣∣∇ψ(θ, ε)
∣∣∣∣Gx(θ, ε) + Hx(ε)

∣∣dθ dε +
∫

x

|ψ(θ, ε)Hx(ε)|
x − 1

dθ dε

)
.

By Cauchy–Schwarz inequality and (2.2), if C[gx] is the Poincaré constant of the probability measure gxL2 ¬
x , we get

(4.13)
∫

x

|∇ux |2gx ≤
((∫

x

(Gx + Hx)
2

gx

) 1
2 + C[gx]

x − 1

(∫
x

H 2
x

gx

) 1
2
)

.

Let us now compute suitable bounds for the terms in the above right hand side. From (4.11) and (4.12) we get for any
θ ∈ (1,2), any ε ∈ (1,2) and any x ∈ (1,2] that |Gx(θ, ε)| ≤ 4Cq |Ax(ε)|(x − 1) ≤ 4CqKq

x−1 and thus

(4.14)
∫

x

Gx(θ, ε)2

gx(θ, ε)
dθ dε ≤ 210c−1

q C3
qK2

q , for every x ∈ (1,2].

Since Hx(ε) = Nε(x)

xε+2ρ2(x)
, where Nε(x) := (−ε(ε − 1)ρ(x) − εxρ′(x))

∫ x

1 τ εq(τ, ε)dτ + εx1+ερ(x)q(x, ε), we have

Nε(1) = 0, and since N ′
ε(x) also vanishes at x = 1, by a Taylor expansion in x we have Nε(x) = 1

2 (x − 1)2N ′′
ε (ξε)

for some ξε ∈ [1, x] and a computation exploiting (4.11) shows that for any x ∈ (1,2] there holds |N ′′
ε (x)| ≤ 2U‖q‖2 for

a universal constant U , so that we deduce Hx(ε) ≤ c−2
q U‖q‖2 for any ε ∈ (1,2) and any x ∈ (1,2]. As a consequence,

(4.11) implies that for every x ∈ (1,2]

(4.15)
1

x − 1

(∫
x

H 2
x (ε)

gx(θ, ε)
dθ dε

) 1
2 ≤ 8C

−3/2
q c

−1/2
q U‖q‖2.

Let us moreover treat C[gx] by invoking the Holley–Stroock estimate (see Section 2): letting Vx(θ, ε) := − loggx(θ, ε),
we have C2[gx] ≤ exp{supx

Vx − infx Vx}C2[L2 ¬
x], where C[L2 ¬

x] enjoys the standard estimate [70] in terms of

diam(x)/π ≤ √
2/π , for any 1 < x ≤ 2. Since a direct estimate shows that supx

Vx − infx Vx ≤ log(Cq/cq) + 6 log 2
for every x ∈ (1,2], we eventually get C2[gx] ≤ 27π−2Cq/cq . This estimate can be inserted in (4.13), together with
(4.15) and (4.14), and we deduce that for a suitable explicit constant Zq , only depending on cq and ‖q‖2, there holds∫
x

|∇ux |2gx ≤ Z2
q for any z ∈ (1,2]. In conclusion, Theorem 4.1 yields the validity of (1.1) with W2 distance and L =

Zq for any x1, x2 ∈ (1,2]. Since the density of π(·, ·|x) is gx(·, ·), and since the latter is given by gx(θ, ε) = εθεq(θ, ε)/Q
for any x > 2, where Q := ∫ 2

1

∫ 2
1 στσ q(τ, σ )dτ dσ , the estimate (1.1) trivially extends to all x1, x2 ∈X. �

4.4. Infinite-dimensional sample space

Here, generalizing the setting displayed in Assumptions 2.1, we extend Theorem 2.2 to the case in which X is a convex
set of a real separable Banach space (V,‖ · ‖V), endowed with a σ -finite reference measure λ. Upon denoting by H1 the
1-dimensional Hausdorff measure on (V,B(V)), we prescribe the following properties for λ:
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(λ1) λ(A) > 0 for every nonempty open set A ∈ B(V);
(λ2) if λ(A) = 0 for some A ∈ B(V), then λ(αA + v) = 0 for all α > 0 and v ∈V;
(λ3) for a set A ∈ B(V), the condition λ({v ∈ V|H1([0, v] ∩ A) > 0}) = 0 entails λ(A) = 0, where [0, v] := {αv|α ∈

[0,1]}.
We plainly observe that V can be taken equal to any Euclidean space Rd for any d ∈ N, and that the standard d-
dimensional Lebesgue measure fulfills the conditions (λ1)–(λ2)–(λ3). We notice that (λ1) entails that the complement
of any λ-null set is dense in V. Non-degenerate Gaussian measures on V also satisfy (λ1)–(λ2)–(λ3). See [72].

In the next theorem, we again confine ourselves to treating kernels of the form (1.2), but now we stress that g : X× →
R is defined pointwise. Therefore, g and π determine pointwise the probability kernel π(·|·). Since we let X be a convex
subset of V, we have dX(x1, x2) := ‖x1 − x2‖V. For a λ-null subset Z of X, we define

(4.16) B(Z) := {
(x1, x2) ∈X

2 : x1, x2 ∈ X \Z,H1([x1, x2] ∩Z
) = 0

}
.

We let Dx denote the Gateaux differential operator with respect to the x-variable and V
′ be the dual space of V′ with

operator norm ‖ · ‖V′ . Finally, the Fisher functional relative to π is now defined as

Jπ

[
g(x, ·)] :=

(∫


‖Dxg(x, θ)‖2
V′

g(x, θ)
π(dθ)

) 1
2

.

The way is now paved for the formulation of the following

Theorem 4.5. Suppose there exists a λ-null set Z ⊂X such that, for π -a.e. θ ∈ , the mapping x �→ g(x, θ) is Gateaux-
differentiable at any x ∈ X \ Z and absolutely continuous on any segment [x1, x2] with (x1, x2) ∈ B(Z). When Wp is
involved, it is further assumed that

∫


|θ |pπ(dθ |x) < +∞ for any x ∈ X. Then, the following statements hold.

(i) Suppose that

K := λ-ess sup
x∈X

∫


∥∥Dxg(x, θ)
∥∥
V′π(dθ) < +∞.

Then, there exists a dTV-Lipschitz version of π(·|·), satisfying (1.1) with L = K/2.
(ii) Let 1 ≤ q < +∞ and let p be the Hölder conjugate exponent of q . If π admits a Poincaré constant Cq [π] and if

K := π()
1
q Cq [π]λ-ess sup

x∈X

∥∥∥∥Dxg(x, ·)∥∥
V′

∥∥
L

p
π ()

< +∞,

then there exists a W1-Lipschitz version of π(·|·), satisfying (1.1) with L = K .
(iii) Let g > 0 (λ ⊗ π)-a.e. in X×  and let

∫ 1
0

∫


‖Dxg(sx1,x2(t), θ)‖V′π(dθ) < +∞ for any (x1, x2) ∈ B(Z). If

K := λ-ess sup
x∈X

C
[
g(x, ·)π]

Jπ

[
g(x, ·)] < +∞,

then there exists a W2-Lipschitz version of π(·|·), satisfying (1.1) with L = K .

If V is infinite-dimensional, a total variation distance estimate like the one of Theorem 4.5–(i) can be found under
stronger assumptions like the following: the map x �→ g(x, θ) is Lipschitz with a constant Lθ satisfying

∫


Lθπ(dθ) <

+∞ and λ is a Gaussian measure. In particular, these last assumptions imply Gateaux differentiability, according to [64,
Theorem 1.1] and references therein.

5. Proofs

5.1. The dynamic formulation of the Wasserstein distance

Here, we provide the theoretical framework for the estimate of the 2-Wasserstein distance. We start by introducing some
facts about the dynamic formulation by means of the continuity equation and the Benamou–Brenier [13] formula, which
are related to the geometry of the space of probability measures. This theory is established in the seminal paper by Otto
[68], see also [69], in the books of Villani [82,83], as well as the book by Ambrosio, Gigli and Savaré [5], see also [4].
Then, we give most emphasis to the continuity equation as a family of degenerate elliptic boundary value problems,
parametrized by time.
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We let  be an open connected subset of Rd . We recall that by C1
c () we denote the space of functions in C1()

whose support is a compact set contained in . Of course, C1
c () ≡ C1() if  is bounded. The space C1

c () is separable
with respect to the C1() norm ‖ψ‖C1() := sup |ψ |+ sup |∇ψ | and contains the space of C1 functions with compact
support in .

We shall consider Borel families of measures {μt }t∈[0,1] ⊂ P(), i.e., [0,1] � t �→ μt(A) is Borel measurable for
any Borel set A ⊆ . Moreover, [0,1] � t �→ μt ∈ P() is said to be a narrowly continuous curve if t, t0 ∈ [0,1] and
t → t0 imply the narrow convergence of μt to μt0 . In the following, we say that a narrowly continuous curve [0,1] �
t �→ μt ∈ P() satisfies the continuity equation on , in coupling with a family of vector fields {vt }t∈[0,1] such that
[0,1] ×  � (t, θ) �→ vt (θ) ∈ R

d is Borel measurable, if

(5.1)
∫ 1

0

∫


(
∂tϕ(t, θ) + ∇ϕ(t, θ) · vt (θ)

)
μt(dθ)dt = 0 for any ϕ ∈ C1

c

(
(0,1) × 

)
.

Here and in the following, ∇ denotes the gradient in the θ variable.
We start by giving sufficient conditions on the curve [0,1] � t �→ μt in order to apply the Benamou–Brenier formula

and estimate the 2-Wasserstein distance between μ0 and μ1.

Theorem 5.1. Let μ0 ∈ P2(), μ1 ∈ P2(), and let {μt }t∈[0,1] ⊂ P() be a Borel family of probability measures. Let
D be a countable dense subset of C1

c () (with respect to the C1() norm). Suppose that

(i) the map [0,1] � t �→ ∫


ψ(θ)μt (dθ) is absolutely continuous for any ψ ∈D,
(ii) � ∈ L1(0,1), where �(t) := sup{ d

ds

∫


ψ(θ)μs(dθ)|s=t : ψ ∈ spanD,
∫


|∇ψ(θ)|2μt(dθ) ≤ 1}.

Then, for a.e. t ∈ (0,1), there exists a unique vector field wt ∈ {∇ψ : ψ ∈ C1
c ()}L

2
μt

(;Rd )
which is solution to

(5.2) 〈wt ,∇ψ〉L2
μt

(;Rd ) = d

ds

∫


ψ(θ)μs(dθ)

∣∣∣∣
s=t

∀ψ ∈ spanD.

Moreover, ‖wt‖L2
μt

(;Rd ) = �(t) holds for a.e. t ∈ (0,1), μt ∈P2() for any t ∈ (0,1) and

(5.3) W2(μt1 ,μt2) ≤
∫ t2

t1

‖wt‖L2
μt

(;Rd ) dt for any 0 ≤ t1 < t2 ≤ 1.

Proof. We preliminarily notice that assumption i) implies that the curve [0,1] � t �→ μt is narrowly continuous, in view of
the Portmanteau theorem (see, e.g. [15, Section 2]). Moreover, since D is countable, there exists a L1-null set N ⊂ (0,1)

such that the mapping t �→ ∫


ψ(θ)μt (dθ) is differentiable at t ∈ (0,1) \ N for any ψ ∈ spanD. Then the supremum in
assumption ii) is well defined (and nonnegative) for every t in (0,1) \ N , hence for a.e. t ∈ (0,1).

A gradient vector field in {∇ψ : ψ ∈ spanD} admits a potential on  which is unique up to a constant, therefore by
mass conservation we see that for a.e. t ∈ (0,1)

Tt [∇ψ] := d

ds

∫


ψ(θ)μs(dθ)

∣∣∣∣
s=t

defines indeed a linear functional on {∇ψ : ψ ∈ spanD}. Moreover, since for any ψ ∈ C1
c () and any t ∈ (0,1) there

holds ‖∇ψ‖L2
μt

(;Rd ) ≤ sup |∇ψ |, we see that {∇ψ : ψ ∈ spanD} is dense in the L2
μt

(;Rd) closure of the linear space

{∇ψ : ψ ∈ C1
c ()} for any t ∈ (0,1). Therefore, assumption ii) shows that, for a.e. t ∈ (0,1), the operator Tt uniquely

extends to a bounded linear functional on the space {∇ψ : ψ ∈ C1
c ()}L

2
μt

(;Rd )
, where we find by Riesz representation

theorem a unique vector field wt (·) such that

Tt [∇ψ] =
∫



〈
wt (θ),∇ψ(θ)

〉
μt(dθ) ∀ψ ∈ spanD

and such that ‖wt‖L2
μt

(;Rd ) = �(t), thus wt is the desired solution to (5.2).

At this stage, it is possible to prove (we refer to [5, Theorem 8.3.1]) that there exists of a Borel map [0,1] ×  �
(t, θ) �→ v(t, θ) ∈ R

d such that ‖v(t, ·)‖L2
μt

(;Rd ) = ‖wt‖L2
μt

(;Rd ) for a.e. t ∈ (0,1) and such that the couple (v(t, ·),μt )

satisfies the continuity equation (5.1). As a consequence, we may invoke the Benamou–Brenier formula (see [5, Theorem
8.3.1] and [4, Proposition 3.30]) to get μt ∈P2() for every t ∈ (0,1) and the validity of the estimate (5.3). �
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Remark 5.2 (Tangency condition). Following [5, Section 8.4], we define the tangent space to a measure μ in P2() by

T ANμ

(
P2()

) := {∇ψ : ψ ∈ C1
c ()

}L2
μ(;Rd )

.

Therefore, in Theorem 5.1, we conclude that wt ∈ T ANμt (P2()) for a.e. t ∈ (0,1). This is equivalent to saying that wt

has minimal L2
μt

(;Rd) norm among L2
μt

(;Rd) solutions to (5.2), see also [4, Section 3.3.2].

We notice that μt can be either supported on the whole of  or on a subset which possibly depends on t . The rest of
this section is devoted to a further analysis of the case of mobile support, starting with some more definitions and notation.

Definition 5.3 (Regular motion). Let ∗ ⊆ R
d be a nonempty open connected set with locally Lipschitz boundary.

We say that a smooth mapping [a, b] × ∗ � (t, θ) �→ �t(θ) ∈ R
d is a regular motion in  if the following conditions

hold. For any t ∈ [a, b], �t is a diffeomorphism between ∗ and a nonempty open connected set with locally Lipschitz
boundary t := �t(∗) ⊆ . Further, there exist positive constants k1, k2 such that for any t ∈ [a, b] and any θ ∈ ∗∣∣∂t�t (θ)

∣∣ + ∣∣∇�t(θ)
∣∣ + ∣∣∇∂t�t (θ)

∣∣ ≤ k2 and k1 ≤ det∇�t(θ).

We notice that under the assumptions of Definition 5.3, ∗ is bounded if and only if t is bounded for every t ∈
[a, b]. A typical example of a family of diffeomorphisms that yields a regular motion is �t(θ) = θ + tv(θ), where
v ∈ W 1,∞(∗) ∩ C1(∗), t ∈ [0,1] and supθ∈∗ |∇v(θ)| < 1.

We next apply the above definition to positivity sets of probability densities. In view of the next definition, we say that
f ∈ ACL([0,1] × ) (in short, that f has the ACL property) if for every coordinate direction ν of R × R

d and for Ld -
almost any line �ν in the direction of ν, f is absolutely continuous on any closed segment contained in �ν ∩ ([0,1] × ).
More details about the ACL property will be given in the next subsection. Furthermore, we will denote by 1A the indicator
function of a set A ⊆  (i.e., 1A(θ) is equal to 1 if θ ∈ A and it is equal to 0 otherwise).

Definition 5.4. Let (t, θ) �→ gt (θ) ∈ R be a nonnegative L1
loc((0,1) × ) function such that

∫


gt (θ)dθ = 1 for a.e.
t ∈ (0,1). We say that it admits a regular extension if the following conditions are satisfied:

(i) for a.e. t in (0,1), the positivity set {θ ∈  : gt (θ) > 0} coincides (up to a Ld -null set) with a nonempty open
connected set t = �t(∗) ⊆  with locally Lipschitz boundary, where [0,1]×∗ � (t, θ) �→ �t(θ) is a regular motion
according to Definition 5.3;

(ii) there exists a W 1,1((0,1) × ) ∩ ACL([0,1] × ) function [0,1] ×  � (t, θ) �→ g̃t (θ) ∈R such that

gt (θ) = g̃(t, θ)1t (θ) for
(
L1 ⊗Ld

)
-a.e. (t, θ) ∈ (0,1) × .

As a consequence of the latter definition, we notice that ∂t g̃t ∈ L1() for a.e. t ∈ (0,1) and gt ∈ W 1,1(t ) for a.e.
t ∈ (0,1), with a L1

loc trace on ∂t thanks to the standard characterization [46] of traces of W 1,1 functions, see for
instance [62, Chapter 15].

The next result provides an estimate of the Wasserstein distance in terms of weak solutions to Neumann boundary
value problems (on time-dependent domain). This is an important step towards the proof of Theorem 4.1 which will be
provided in Section 5.2. Indeed, to a regular extension of a function g ∈ L1

loc((0,1) × ) according to Definition 5.4 we
associate the family (parametrized by t ) of Neumann boundary value problems

(5.4)

{
−div(gt∇ut ) = ∂t g̃t in t,

gt∇ut · nt = gt∂t�t ◦ �−1
t · nt on ∂t ,

Here, for given t , nt denotes the (Hd−1- a.e. existing on ∂t ) outer unit normal to ∂t . For such moving domains, a
natural calculus tool is the Reynolds transport formula (see Lemma A.1 in the Appendix): notice that ∂t�t ◦ �−1

t rep-
resents the velocity of the boundary. It is possible that such velocity vanishes on some part of the boundary or on the
whole boundary (in particular, if �t does not depend on t , then the domain is fixed, i.e., t ≡  for any t ). In fact, by
means of Definition 5.4 we require two properties: a regularly moving domain and the existence of a global Sobolev
extension. Such properties will ensure the applicability of the Reynolds transport formula from Lemma A.1 (which also
implies the standard compatibility condition for the Neumann problem (5.4), thanks to the mass conservation property
d
dt

∫
t

gt (θ)dθ = 0). For given t , a weighted Sobolev space on t (with weight gt that is positive Ld -a.e. on t ) is the
natural framework for a notion of weak solution to problem (5.4). Moreover, if t is bounded we complement (5.4)
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with the null mean condition
∫
t

ut (θ)gt (θ)dθ = 0 (instead if t is unbounded we complement (5.4) with a vanish-

ing condition at infinity). Therefore, if t is bounded we let C1
gt

(t ) be the space of functions ψ ∈ C1(t ) such that∫
t

ψ(θ)gt (θ)dθ = 0, while if t is unbounded we just let C1
gt

(t ) := C1
c (t ). We give the following

Definition 5.5 (Weak solution). Let g satisfy all the conditions in Definition 5.4. Fix t ∈ (0,1) such that gt ∈ W 1,1(t )

and ∂t g̃t ∈ L1(). The weighted Sobolev space H 1(t , gt ) is then defined as the completion of C1
gt

(t ) w.r.t. the norm

‖ψ‖H 1(t ,gt )
:= (

∫
t

|∇ψ(θ)|2gt (θ)dθ)1/2. We say that ut ∈ H 1(t , gt ) is a weak solution to problem (5.4) if for every

ψ ∈ C1
gt

(t ) there holds

∫
t

∇ψ(θ) · ∇ut (θ)gt (θ)dθ =
∫

t

ψ(θ)∂t g̃t (θ)dθ +
∫

∂t

ψ(σ )gt (σ )∂t�t

(
�−1

t (σ )
) · nt (σ )Hd−1(dσ).

Theorem 5.6. Let g satisfy all the conditions in Definition 5.4. For any t ∈ [0,1], let μt := g̃tLd ¬
t and suppose that

μ0 ∈ P2() and μ1 ∈ P2(). Suppose that, for a.e. t ∈ (0,1), ut ∈ H 1(t , gt ) is a weak solution to problem (5.4), and
that the map (0,1) � t �→ (

∫


|∇ut (θ)|2gt (θ)dθ)1/2 belongs to L1(0,1). Then, there hold μt ∈ P2() for any t ∈ (0,1),
∇ut ∈ T ANμt (P2()) for a.e. t ∈ (0,1) and

(5.5) W2(μt1,μt2) ≤
∫ t2

t1

(∫


∣∣∇ut (θ)
∣∣2

gt (θ)dθ

) 1
2

dt for any 0 ≤ t1 < t2 ≤ 1.

Proof. Let D be a countable dense subset of C1
c () (in the C1() norm). By Lemma A.1 in the Appendix, g̃ is such

that [0,1] � t �→ ∫
t

ψ(θ)g̃t (θ)dθ = ∫


ψ(θ)μt (dθ) is absolutely continuous, and since D is countable, the null set
N ∈ (0,1) of its nondifferentiability points can be assumed to be independent on ψ ∈ spanD (in particular, assumption i)
of Theorem 5.1 is satisfied by the Borel family {μt }t∈[0,1] ⊂P()). Moreover, with the notation

ψt(·) :=
⎧⎨
⎩ψ(·) −

∫


ψ(θ)gt (θ)dθ if t is bounded,

ψ(·) otherwise,

we have ψt ∈ C1
gt

(t ) and, for any t ∈ (0,1) \ N and any ψ ∈ spanD, we have

d

dr

∫


ψ(θ)μt (dθ)

∣∣∣∣
r=t

= d

dr

∫
r

ψ(θ)g̃(r, θ)dθ

∣∣∣∣
r=t

= d

dr

∫
r

ψt (θ)g̃(r, θ)dθ

∣∣∣∣
r=t

.

Therefore, still by making use of Lemma A.1, we apply Reynolds transport formula we get

d

dr

∫
r

ψ(θ)g̃r (θ)dθ

∣∣∣∣
r=t

=
∫

t

ψt (θ)∂t g̃(t, θ)dθ +
∫

∂t

ψt (σ )gt (σ )∂t�t

(
�−1

t (σ )
) · nt (σ )Hd−1(dσ)

=
∫

t

∇ψt(θ) · wt (θ)gt (θ)dθ =
∫

t

∇ψ(θ) · wt (θ)gt (θ)dθ

for any t ∈ (0,1) \ N and any ψ ∈ spanD, where we used the fact that ut is a weak solution to (5.4) and the nota-

tion wt := ∇ut . By assumption we have ut ∈ H 1(t , gt ) for a.e. t ∈ (0,1), thus wt ∈ {∇ψ : ψ ∈ C1
c (t )}

L2
gt

(t ;Rd )
.

Since any C1
c (t ) function can be extended to a function in C1

c (), by truncation and extension the spaces

{∇ψ : ψ ∈ C1
c (t )}

L2
gt

(t ;Rd )
and {∇ψ : ψ ∈ C1

c ()}L
2
gt

(;Rd )
are isometric. Thus, for a.e. t ∈ (0,1), wt is the unique

solution in {∇ψ : ψ ∈ C1
c ()}L

2
gt

(;Rd )
to problem (5.2) and by Riesz isomorphism it satisfies ‖wt‖L2

gt
(;Rd ) = �(t) for

a.e. t ∈ (0,1), where � is defined in Theorem 5.1. Hence, condition ii) of Theorem 5.1 is also satisfied. Therefore, (5.5)
follows along with wt ∈ T ANμt (P2()) for a.e. t ∈ (0,1). �

5.2. Basic estimates of dTV, W1 and W2: Proof of Theorem 2.2

In this subsection, we provide the proofs of the basic results on a finite dimensional sample space under the validity of
Assumptions 2.1. Let us introduce some further notation. For ν ∈ S

m−1, let Pν be the projection operator onto {ν}⊥ :=
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{z ∈ R
m : z · ν = 0} and let Xν := Pν(X). We notice that Xν inherits the convexity of X. We introduce the line segment

Iξ,ν := {ξ + tν : t ∈ R} ∩ X, and cleary Iξ,ν 
= ∅ if ξ ∈ Xν . The following is the standard ACL characterization of
Sobolev functions (see for instance [18,39,52,62]): G ∈ W

1,1
loc (X) if and only if it admits a representative such that, for

any coordinate direction ν in R
m, the restriction to Iξ,ν is locally absolutely continuous for Lm−1-a.e. ξ ∈ Xν . In such

case, the ACL property holds with respect to any direction, and it can be rephrased as follows. Given ν ∈ S
m−1, for Lm−1-

a.e. ξ ∈ Xν , the L1(0,1) map t �→ G(sx1,x2(t)) is (up to having modified G on a Lm-null set) absolutely continuous on
(0,1), where x, y are any two distinct points of Iξ,ν , and

(5.6)
d

dt

(
G

(
sx1,x2(t)

)) = |x1 − x2|∂νG
(
sx1,x2(t)

) = ∇G
(
sx1,x2(t)

) · (x2 − x1) for L1-a.e. t ∈ (0,1).

The weak ν-directional derivative of G coincides with the pointwise Lm-a.e. classical ν-directional derivative. Before the
proof of the main theorems, we state the following simple lemma.

Lemma 5.7. Let Y⊂R
m be open. Let ψ ∈ L∞

π (). Let g ∈ L1
Lm⊗π

(Y× ). If
∫


‖g(·, θ)‖W 1,1(Y)π(dθ) < +∞, then

(5.7) Gψ(·) :=
∫



ψ(θ)g(·, θ)π(dθ)

belongs to W 1,1(Y) and

(5.8) ∇xGψ(x) =
∫



ψ(θ)∇xg(x, θ)π(dθ) for Lm-a.e. x ∈Y.

Proof. By the assumptions, g ∈ L1
Lm⊗π

(Y× ), ∇xg ∈ L1
Lm⊗π

(Y× ) and for π -a.e. θ ∈  the mapping x �→ g(x, θ)

belongs to W 1,1(Y). We apply Fubini’s theorem to get∫
Y

Gψ(x)∇xζ(x)dx =
∫



ψ(θ)

(∫
Y

g(x, θ)∇xζ(x)dx

)
π(dθ) = −

∫


ψ(θ)

(∫
Y

∇xg(x, θ)ζ(x)dx

)
π(dθ)

= −
∫
Y

ζ(x)

(∫


ψ(θ)∇xg(x, θ)π(dθ)

)
dx

for any ζ ∈ C∞
c (Y) and∣∣∣∣

∫
Y

(∫


ψ(θ)∇xg(x, θ)π(dθ)

)
dx

∣∣∣∣ ≤ ‖ψ‖L∞
π ()

∫


∥∥g(·, θ)
∥∥

W 1,1(Y)
π(dθ) < +∞.

Therefore, the right-hand-side in (5.8) belongs to L1(Y) and it is the weak gradient of Gψ . �

We proceed to the proof of the main results. We start with the most direct proof concerning the estimate in total
variation distance. We also refer to [35] for further results involving the total variation distance. We recall the dual
formulation of the total variation distance. For μ,ν ∈ P() there holds

dTV(μ, ν) = 1

2
sup

ψ∈Cc()
|ψ |≤1

(∫


ψ(θ)μ(dθ) −
∫



ψ(θ)ν(dθ)

)
,

where Cc() is the set of continuous functions on  having compact support contained in . We notice that due to the
separability of Cc() it is possible to compute the above supremum on a countable dense subset (w.r.t. the sup norm).

Proof of Theorem 2.2-(i). We first claim that for any bounded continuous function ψ on , the function Gψ from (5.7),
which is in W

1,1
loc (X) by Lemma 5.7, belongs to W 1,∞(X). Indeed, since π(|x) = ∫


g(x, θ)π(dθ) = 1 for Lm-a.e.

x ∈ X, it is clear that |Gψ(x)| ≤ sup |ψ | for Lm-a.e. x ∈ X. By Lemma 5.7 and by assumption, we get

∣∣∇Gψ(x)
∣∣ ≤ sup



|ψ |
∫



∣∣∇xg(x, θ)
∣∣π(dθ) = K sup



|ψ |

for Lm-a.e. x ∈ X. The claim is proved. In particular, for any ψ ∈ Cc(), Gψ has a Lipschitz representative on X.
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Let D denote a countable dense subset (in the sup norm) of {ψ ∈ Cc() : |ψ | ≤ 1 on }. Let ĝ be a representative
(according to the (Lm ⊗π)-a.e. identification) of g such that

∫


ĝ(x, θ)π(dθ) = 1 for every x ∈X. Therefore, π̂(dθ |x) :=
ĝ(x, θ)π(dθ) is a representative of the kernel defined by (1.2), and Ĝψ(x) := ∫


ψ(θ)ĝ(x, θ)π(dθ) is a representative of

Gψ for any ψ ∈ D. Moreover, for ψ ∈ D, Ĝψ agrees Lm-a.e. with a Lipschitz function on X, i.e., there exists a Lm-null
set Zψ ⊂ X such that |Ĝψ(x2) − Ĝψ(x1)| ≤ K|x2 − x1| for any x1, x2 ∈ X \ Zψ . Since D is countable, there exists a
Lm-null set Z ⊂X such that for every ψ ∈D the restriction of Ĝψ to X \Z is Lipschitz (with Lipschitz constant bounded
by K). Therefore

dTV
(
π̂(·|x2), π̂(·|x1)

) = 1

2
sup
ψ∈D

(
Ĝψ(x2) − Ĝψ(x1)

) ≤ 1

2
sup
ψ∈D

‖∇Gψ‖L∞(X)|x2 − x1| ≤ K

2
|x2 − x1|

for any x1, x2 ∈ X \ Z. Note that π̂(·|x) ∈ P() for any x ∈ X \ Z. Since X \ Z is dense in X and since (P(), dTV) is
a complete metric space, the mapping X \Z � x �→ π̂(·|x) ∈ P() admits a unique Lipschitz continuous extension (with
respect to the total variation distance) to the whole of X with the same Lipschitz constant K/2. �

For the proof of Theorem 2.2–(ii), we take advantage of the Kantorovich–Rubinstein dual fomulation of the 1-
Wasserstein distance. See [82, Section 1.2]. For any μ,ν ∈ P1(), there holds

W1(μ, ν) = sup
ψ∈C1

c ()

Lip(ψ)≤1

(∫


ψ(θ)μ(dθ) −
∫



ψ(θ)ν(dθ)

)
.

Again, the separability of C1
c () allows to take the above supremum on a countable dense set (in the sup norm).

Proof of Theorem 2.2-(ii). We claim that the function Gψ from (5.7) belongs to W 1,∞(X) for any ψ ∈ C1
c (). Indeed,

as seen in the proof of Theorem 2.2–(i), we have |Gψ(x)| ≤ sup |ψ | for Lm-a.e. x ∈ X. Moreover, by Lemma 5.7, by
Hölder inequality and by the Poincaré inequality (2.2), since ∇Gψ = ∇Gψ−a for any a ∈R, we get

∣∣∇Gψ(x)
∣∣ = inf

a∈R

∣∣∣∣
∫



(
ψ(θ) − a

)∇xg(x, θ)π(dθ)

∣∣∣∣ ≤ inf
a∈R

(∫


∣∣ψ(θ) − a
∣∣qπ(dθ)

) 1
q
(∫



∣∣∇xg(x, θ)
∣∣pπ(dθ)

) 1
p

≤ Cq [π]
(∫



∣∣∇ψ(θ)
∣∣qπ(dθ)

) 1
q
(∫



∣∣∇xg(x, θ)
∣∣pπ(dθ)

) 1
p ≤ KLip(ψ)

for Lm-a.e. x ∈X, thus proving the claim.
Let D be a countable dense subset (in the sup norm) of {ψ ∈ C1

c () : Lip(ψ) ≤ 1}. By the same argument as in the
proof of Theorem 2.2–(i), we obtain a Lm-null set Z in X and a representative (still denoted by π(·|·)) of the kernel
defined by (1.2) such that, for any x1, x2 ∈X \Z

W1
(
π(·|x1),π(·|x2)

) ≤ sup
ψ∈D

‖∇Gψ‖L∞(X)|x2 − x1| ≤ K|x2 − x1|.

Since X \ Z is dense in X and since (P1(),W1) is complete, there exists a unique map X � x �→ π∗(·|x) ∈ P1() that
satisfies the above Lipschitz estimate on the whole of X, with the same Lipscthitz constant K , and such that π∗(·|x) ≡
π(·|x) for any x ∈ X \ Z. Since the assumptions of Theorem 2.2 are also satisfied, x �→ π∗(·|x) is also continuous with
respect to the total variation distance, therefore π∗(|x) = π∗(|x) = 1 for any x ∈X. �

Proof of Theorem 2.2-(iii). Once more, we start by claiming that, for any ψ ∈ C1
c (), the function Gψ from (5.7)

belongs to W 1,∞(X). Indeed, we have as usual ‖Gψ‖L∞(X) ≤ sup |ψ | and again by Cauchy–Schwarz inequality and by
(2.2), by the positivity of g and by assumption, we get

∣∣∇xGψ(x)
∣∣ = inf

a∈R

∣∣∣∣
∫



(
ψ(θ) − a

)∇xg(x, θ)π(dθ)

∣∣∣∣ ≤ inf
a∈R

(∫


∣∣ψ(θ) − a
∣∣2

g(x, θ)π(dθ)

) 1
2
(∫



|∇xg(x, θ)|2
g(x, θ)

π(dθ)

) 1
2

≤ C
[
g(x, ·)π](∫



∣∣∇ψ(θ)
∣∣2

g(x, θ)π(dθ)

) 1
2

Jπ

[
g(x, ·)] ≤ K

(∫


∣∣∇ψ(θ)
∣∣2

g(x, θ)π(dθ)

) 1
2 ≤ KLip(ψ)(5.9)
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for Lm-a.e. x ∈ X, thus proving the claim. As seen in the proof of Theorem 2.2–(ii), this shows that there exists a W1-
Lipschitz map X � x �→ π∗(·|x) ∈ P1(), with Lipschitz constant K , which is a version of the kernel defined by (1.2).
We are left to check that π∗(·|x) is Lipschitz with respect to W2 as well. Note that by assumption the second moment of
π∗(·|x) is finite for Lm-a.e. x ∈ X.

We first notice that G∗
ψ(x) := ∫


ψ(θ)π∗(dθ |x) is the Lipschitz-continuous representative of Gψ , for any ψ ∈ C1

c ().
Indeed, the W1-Lipschitz estimate entails

∣∣G∗
ψ(x1) − G∗

ψ(x2)
∣∣ =

∣∣∣∣
∫



ψ(θ)π∗(dθ |x1) −
∫



ψ(θ)π∗(dθ |x2)

∣∣∣∣ ≤
∫

×

∣∣ψ(θ1) − ψ(θ2)
∣∣ηx1,x2(dθ1 dθ2)

≤ Lip(ψ)W1
(
π∗(·|x1),π

∗(·|x2)
)
) ≤ KLip(ψ)|x1 − x2|

for any x1, x2 ∈X, where ηx1,x2 ∈P(×) is an optimal coupling between π∗(·|x1) and π∗(·|x2) for the 1-Wasserstein
distance. In particular for any x1, x2 ∈ X, the map [0,1] � t �→ G∗

ψ(sx1,x2(t)) is absolutely continuous for any ψ ∈ C1
c (),

so that assumption i) of Theorem 5.1 is satisfied by the narrowly continuous curve [0,1] � t �→ π∗(·|sx1,x2(t)) ∈ P().
Let D be a countable dense subset of C1

c () (in the C1() norm). Let ν ∈ S
m−1. We take advantage of the fact that any

Lm-null subset Z of X has the following property (by Fubini theorem): for Lm−1-a.e. ξ ∈Xν there holds L1(Z∩Iξ,ν) = 0,
and the Lm−1-null set of ξ ’s where this property fails can be taken to be independent of ψ ∈ D, since D is countable.
Therefore, thanks to (5.9), for Lm−1-a.e. ξ ∈Xν and any x1, x2 ∈ Iξ,ν , we have the following:

∣∣∇xG
∗
ψ

(
sx1,x2(t)

)∣∣ = inf
a∈R

∣∣∣∣
∫



(
ψ(θ) − a

)∇xg
(
sx1,x2(t), θ

)
π(dθ)

∣∣∣∣ ≤ K

(∫


∣∣∇ψ(θ)
∣∣2

g
(
sx1,x2(t), θ

)
π(dθ)

) 1
2

for a.e. t ∈ (0,1) \ N and any ψ ∈ D, where N is a null set which is again independent of ψ ∈ D. Moreover, for any
t ∈ (0,1) \ N the latter inequality also holds for any ψ ∈ spanD, due to the linearity of ψ �→ G∗

ψ(x).

As a consequence, for Lm−1-a.e. ξ ∈Xν and any x1, x2 ∈ Iξ,ν , we have

d

dr

∫


ψ(θ)π∗(dθ |sx1,x2(r)
)∣∣∣∣

r=t

= d

dr

(
G∗

ψ

(
sx1,x2(r)

))∣∣∣∣
r=t

≤ |x1 − x2| ·
∣∣∇xG

∗
ψ

(
sx1,x2(t)

)∣∣

≤ K|x1 − x2|
(∫



∣∣∇ψ(θ)
∣∣2

g(x, θ)π(dθ)

) 1
2

for any t ∈ (0,1) \ N and any ψ ∈ spanD. Whence,

�x1,x2(t) := sup
ψ∈spanD

{
d

dr

∫


ψ(θ)π∗(dθ |sx1,x2(r)
)∣∣∣∣

r=t

:
∫



∣∣∇ψ(θ)
∣∣2

π∗(dθ |gsx1,x2 (t)) ≤ 1

}
≤ K|x1 − x2|

for a.e. t ∈ (0,1). Here, (0,1) � t �→ �x1,x2(t) is measurable, being the supremum of the linear span of countably many

measurable functions. Moreover, we deduce from the latter estimate that
∫ 1

0 �x,y(t) dt ≤ K|x − y| for Lm−1-a.e. ξ ∈ Xν

and any x1, x2 ∈ Iξ,ν . In particular, for Lm−1-a.e. ξ ∈Xν and any x1, x2 ∈ Iξ,ν , assumption ii) of Theorem 5.1 is satisfied
by the curve [0,1] � t �→ π∗(·|sx1,x2(t)) ∈ P(), and we also notice that (since π∗(·|x) ∈ P2() for Lm-a.e. x ∈ X)
we have π∗(·|sx1,x2(t)) ∈ P2() for a.e. t ∈ (0,1) up to another Lm−1-null set of ξ ’s in Xν . Therefore, by applying
Theorem 5.1, for Lm−1-a.e. ξ ∈ Xν and any x1, x2 ∈ Iξ,ν we get that both π∗(·|x1) and π∗(·|x2) belong to P2() and
that the bound in (1.1) is fulfilled for such x1, x2, with the W2 distance and with L = K . By the arbitrariness of ν and by
the narrow continuity of X � x �→ π∗(·|x) ∈ P(), the W2-Lipschitz estimate extends to any x1, x2 ∈ X. Indeed, given
generic x1, x2 ∈ X with x1 
= x2, letting ν := x2−x1|x2−x1| , it is enough to take sequences x1,n → x1 and x2,n → x2 such that,

for every n ∈ N, x2,n−x1,n

|x2,n−x1,n| = ν and such that (1.1) applies for any couple of points on the line IPν(x2,n),ν . Then, (1.1)
applies for the couple x1,n, x2,n, for any n, and it passes to the limit by the narrow lower semicontinuity of W2, according
to [5, Proposition 7.13]. �

Proof of Theorem 2.2-(iv). The proof is very similar to the previous ones. We first show that Gψ from (5.7) belongs
to W 1,∞(X) for any ψ ∈ C1

c (). It belongs indeed to W
1,1
loc (X) by Lemma 5.7, and to L∞(X) with the same argument

of the proof of Theorem 2.2–(i). Moreover, combining Lemma 5.7, the Sobolev inequality (2.3) with critical exponent
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p∗ = dp
d−p

(p∗ = +∞ if p = d = 1), and Hölder’s inequality, we get

∣∣∇xGψ(x)
∣∣ ≤ inf

a∈R

∫


∣∣ψ(θ) − a
∣∣∣∣∇xg(x, θ)

∣∣dθ ≤ inf
a∈R‖ψ − a‖Lp∗

()

∥∥∇xg(x, ·)∥∥
L

p∗
p∗−1 ()

≤ Sp()

(∫


∣∣∇ψ(θ)
∣∣2

g(x, θ)dθ

) 1
2
∥∥∥∥ 1

g(x, ·)
∥∥∥∥

1
2

L
p

2−p ()

∥∥∇xg(x, ·)∥∥
L

p∗
p∗−1 ()

(5.10)

for Lm-a.e. x ∈ X. By assumption and by (5.10) we conclude that ‖∇xGψ‖L∞(X) ≤ KLip(ψ). As seen in the proof of
Theorem 2.2–(ii), it follows that the probability kernel π(·|·) defined by (1.2) admits a W1-Lipschitz continuous version
X � x �→ π∗(·|x) ∈ P(). With the same argument of the proof of Theorem 2.2–(iii), the proof concludes by showing
that x �→ π∗(·|x) ∈P2() is also W2-Lipschitz-continuous, with Lipschitz constant not exceeding K . �

5.3. Moving domains: Proof of Theorem 4.1 and of Theorem 4.2

We deal with solutions to nonhomogeneous Neumann boundary value problems, following the line of Theorem 5.6.
Given a propability kernel π(·|·), the curve [0,1] � t �→ π(·|sx1,x2(t)) ∈ P() depends on the two parameters x1, x2.
Accordingly, we specify the notion of regular motion, which is essentially the same as Definition 5.3.

Definition 5.8 (X-regular motion). Let ∗ ⊆ R
d and x ⊆  be nonempty open connected sets with locally Lipschitz

boundary, for any x ∈X. We say that a smooth mapping X×∗ � (x, θ) �→ �x(θ) is a X-regular motion if [0,1]×∗ �
(t, θ) �→ �sx1,x2 (t)(θ) is regular motion according to Definition 5.3 for any x1, x2 ∈X and x = �x(∗) for any x ∈X. In

such assumptions, we further define for any x ∈X and any ν ∈ S
m−1 the function Vν

x : x →R
d (resp. Vx : x →R

d×d )
by Vν

x := ∂ν�x ◦ �−1
x (resp. Vx := ∇x�x ◦ �−1

x ).

Definition 5.9 (Regular extension). Let g ∈ L1
loc(X× ) satisfy

∫


g(x, θ)dθ = 1 for a.e. x ∈ X. We say that g admits
a regular extension if the following conditions are satisfied:

(i) there is a X-regular motion �x : ∗ → x according to Definition 5.8 such that x ≡ {g(x, ·) > 0} for Lm-a.e.
x ∈ X;

(ii) there exists g̃ ∈ L1
loc(X × ) such that g̃ ∈ W 1,1(X̃ × ) for any open set X̃ compactly contained in X and such

that

(5.11) g̃(x, θ)1x (θ) = g(x, θ) for
(
Lm ⊗Ld

)
-a.e. (x, θ) in X× .

Of course, for fixed x, the above identification ≡ is understood up to Ld -null sets of . As g̃ from Definition 5.9 is
in W 1,1(X̃ × ), we shall use Sobolev regularity on linear submanifolds (see also [18, Theorem 2.5.3]). We summarize
some basic facts in the following proposition.

Proposition 5.10. Let g̃ ∈ W 1,1(X̃ × ) for any open set X̃ compactly contained in X. Let ν ∈ S
m−1. For Lm−1-a.e.

ξ ∈ Xν and any two distinct points x1, x2 ∈ Iξ,ν , the map (t, θ) �→ g̃(sx1,x2(t), θ) belongs to W 1,1((0,1) × ) and for
(L1 ⊗Ld)-a.e. (t, θ) ∈ (0,1) ×  there hold

(5.12)
d

dt

{
g̃
(
sx1,x2(t), θ

)} = |x2 − x1|∂νg̃
(
sx1,x2(t), θ

)
,

∣∣∣∣ d

dt
g̃
(
sx1,x2(t), θ

)∣∣∣∣≤ |x2 − x1|
∣∣∇x g̃

(
sx1,x2(t), θ

)∣∣,
and, in particular, ∂νg̃(x, ·) ∈ L1() for L1-a.e. x ∈ Iξ,ν .

Proof. The ACL representative of g̃ (here not relabeled) has the ACL property on almost any lower dimensional
hyperplane intersecting X̃ × . Let ν ∈ S

m−1; for Lm−1-a.e. ξ ∈ Xν , the map (t, θ) �→ g(ξ + tν, θ) belongs there-
fore to W 1,1((t1, t2) × ) for any t1 < t2 such that ξ + tiν ∈ X, i = 1,2. The map (t, θ) �→ g̃(sx1,x2(t), θ) belongs
to W 1,1((0,1) × ) as the composition of the latter with the segment parametrization [0,1] � t �→ sx1,x2(t), where
x = ξ + t1ν and y = ξ + t2ν. Then, (5.12) follows from the fact that g̃ has classical ν-directional derivative almost
everywhere, coinciding with the scalar product of ν with the gradient. See for instance [49, Theorem 4, pp. 200]. �

Associated to a function g as in Definition 5.9, we consider the boundary value problem (4.7), where Vν
x := ∂ν�x ◦

(�x)
−1. The precise notation for (4.7) is the same of problem (5.4), apart from the X-valued index x instead of t .
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Therefore, for those couples x, ν such that g(x, ·) ∈ W 1,1(x) and ∂νg̃(x, ·) ∈ L1(x), we may define a weak solution
uν

x ∈ H 1(x,g(x, ·)) to (4.7) by means of Definition 5.5.

Proof of Theorem 4.1. Throughout this proof, for notational ease, we shorten the expression sx1,x2(t) to s(t), whenever
it is clear which couple (x1, x2) we are referring to. We start by preliminarily observing that, given ν ∈ Sm−1, for Lm−1-
a.e. ξ ∈ Xν and any couple of distinct points x1, x2 ∈ Iξ,ν , the map (t, θ) �→ g̃(s(t), θ) belongs to W 1,1((0,1) × ), by
Proposition 5.10. This fact entails that g(s(t), ·) ∈ W 1,1(s(t)) and d

dt
g̃(s(t), ·) ∈ L1(s(t)) for a.e. t ∈ (0,1). Therefore,

we may take advantage of the notion of weak solution to problem (5.4) as given in Definition 5.5, with gt (·) therein
replaced by g(s(t), ·), and �t therein replaced by �s(t).

The proof is an application of Theorem 5.6, for almost every line in X in any given direction. Indeed, let us consider
an ACL representative of the regular extension g̃, that we still denote by g̃. Of course, combining the assumptions on g

with (5.11), we have
∫
x

g̃(x, θ)dθ = 1 and
∫
x

|θ |2g̃(x, θ)dθ < +∞ for Lm-a.e. x ∈ X. Let ν ∈ S
m−1. For Lm−1-a.e.

ξ ∈Xν and any x1, x2 ∈ Iξ,ν , we apply Theorem 5.6 to obtain π̃(·|x1) ∈ P2(), π̃(·|x2) ∈ P2() and

(5.13) W2
(
π̃(·|x1), π̃(·|x2)

) ≤ |x1 − x2|
∫ 1

0

(∫


∣∣∇uν
s(t)(θ)

∣∣2
g
(
s(t), θ

)
dθ

) 1
2

dt,

where π̃(·|x) := g̃(x, ·)Ld ¬
x is a representative of the kernel π(·|·), in view of (5.11). We notice that the appearance

of the factor |x1 − x2| is due to (5.12) and to the identity

(5.14)
d

dt

(
�s(t)(θ)

) = |x1 − x2|∂ν�s(t)(θ).

As a consequence, for Lm−1-a.e. ξ ∈ Xν and any couple of distinct points x1, x2 ∈ Iξ,ν , we get W2(π̃(·|x1), π̃(·|y2)) ≤
K|x1 − x2|. The last inequality follows from (5.13) and (4.8): we bound once more the L1-essential supremum on (0,1)

with the Lm-essential supremum on X, for all but a Lm−1-null set of lines in a given direction.
Now, let ψ ∈ C1

c () and G̃ψ(x) := ∫
x

ψ(θ)g̃(x, θ)dθ , so that, by Definition 5.9, we get |G̃ψ(x)| ≤ sup |ψ | for
Lm-a.e. x ∈ X. By performing the same estimate of the proof of Theorem 5.6, also taking (5.12) and (5.14) into account,
we have the following: given any ν ∈ S

m−1, for Lm−1-a.e. ξ ∈ Xν and any couple of distinct points x1, x2 ∈ Iξ,ν there
holds

(5.15)
d

dr
G̃ψ

(
s(r)

)∣∣∣∣
r=t

= |x1 − x2|
∫

s(t)

∇ψ(θ) · ∇uν
s(t)(θ)g

(
s(t), θ

)
dθ

for a.e. t ∈ (0,1), where we have used the definition of uν
z as solution to the boundary value problem (4.7). Taking (5.6)

into account, (5.15) can be rephrased as follows: ν · ∇xG̃ψ(x) = ∫
x

∇ψ(θ) · ∇uν
x(θ)g(x, θ)dθ for Lm-a.e. x ∈X. Since∫

x
g̃(x, θ)dθ = 1 for Lm-a.e. x ∈X, we further estimate by the Cauchy–Schwarz inequality and (4.8), to get

∣∣ν · ∇xG̃ψ(x)
∣∣ ≤

(∫
x

∣∣∇ψ(θ)
∣∣2

g(x, θ)dθ

) 1
2
(∫

x

∣∣∇uν
x(θ)

∣∣2
g(x, θ)dθ

) 1
2 ≤ KLip(ψ)

for Lm-a.e. x ∈ X. Here, K is independent of ν by assumption, hence |∇xG̃ψ(x)| ≤ KLip(ψ) for Lm-a.e. x ∈ X. Note
that G̃ψ is a representative of the L∞(X) function Gψ(·) := ∫


ψ(θ)g(·, θ)dθ . Having shown that |Gψ(x)| ≤ sup |ψ |

and |∇xGψ(x)| ≤ KLip(ψ) for Lm-a.e. x ∈ X, by the same argument as in the proof of Theorem 2.2–(ii), we obtain the
existence of a W1-Lipschitz representative π∗(·|·) for the probability kernel π(·|·).

Since G∗
ψ(x) := ∫


ψ(θ)π∗(dθ |x) is Lipschitz on X and G̃ψ is ACL, the two functions coincide pointwise everywhere

on almost every segment in a given direction ν ∈ S
m−1. Taking a countable dense subset D of ψ ∈ C1

c () (in the C1()

norm) shows that π∗(·|·) coincides with π̃(·|·) on almost every line segment in the same direction ν. Therefore, given
ν ∈ S

m−1, π∗(·|·) itself satisfies W2(π
∗(·|x1),π

∗(·|x2)) ≤ K|x1 − x2| for Lm−1-a.e. ξ ∈ Xν and any couple of distinct
points x1, x2 ∈ Iξ,ν . The result follows by the same argument at the end of the proof of Theorem 2.2–(iii). �

In most situations a solution to (4.7) is not at disposal. Therefore, with some stronger assumptions we try to give an
estimate of the norm of the solution in its dual formulation as seen in Theorem 5.1. This is done in Theorem 4.2. We
recall that the definition of the Fisher functionals J1 and J2 is given in (4.9).

Proof of Theorem 4.2. Throughout this proof, as in the previous one, we simplify the notation by writing s(t) in place
of sx1,x2(t), since no ambiguity arises. We apply Reynolds transport formula. Let us consider an ACL representative of
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g̃, still denoted by g̃. Let ψ ∈ C1
c (). Given any ν ∈ S

m−1, for Lm−1-a.e. ξ ∈ Xν we take any x1, x2 ∈ Iξ,ν and we obtain
the absolute continuity of the map [0,1] � t �→ ∫

s(t)
ψ(θ)g̃(s(t), θ)dθ , along with

d

dr

∫
s(t)

ψ(θ)g̃
(
s(r), θ

)
dθ

∣∣∣∣
r=t

= d

dr

∫


ψ s(t)(θ)g̃
(
s(r), θ

)
dθ

∣∣∣∣
r=t

= |x1 − x2|
∫

s(t)

ψ s(t)(θ)∂ν g̃
(
s(t), θ

)
dθ + |x1 − x2|

∫
s(t)

div
(
ψ s(t)(θ)g̃

(
s(t), θ

)
Vs(t)(θ)

)
dθ(5.16)

for a.e. t ∈ (0,1). Here, we have used Lemma A.1 and (5.12), and we have introduced the function

ψ s(t)(·) := ψ(·) −
∫

s(t)

ψ(θ)g̃
(
s(t), θ

)
dθ, t ∈ [0,1].

Let us proceed by estimating the two terms in the right hand side of (5.16). The first term in the right hand side of
(5.16) can be treated as in the proof of Theorem 2.2–(iii), so that by Cauchy–Schwarz inequality

∫
s(t)

ψ s(t)(θ)∂νg̃
(
s(t), θ

)
dθ ≤

(∫


∣∣ψ s(t)(θ)
∣∣2

g
(
s(t), θ

)
dθ

) 1
2

J1
(
g̃
(
s(t), ·))

and then the Poincaré inequality (2.2) implies

(5.17)
∫

s(t)

ψ s(t)(θ)∂ν g̃
(
s(t), θ

)
dθ ≤ C

[
g
(
s(t), ·)](∫



∣∣∇ψ(θ)
∣∣2

g
(
s(t), θ

)
dθ

) 1
2

J1
[
g̃
(
s(t), ·)].

Note that g̃(s(t), ·)1s(t) (·) and g(s(t), ·) coincide for a.e. t ∈ (0,1) as L1() functions. The divergence term in (5.16) can
be estimated by Cauchy–Schwarz and Poincaré’s inequalities: indeed, since

∫


g(x, θ)dθ = 1 and |Vν
z | ≤ |Vz|, making

use of the shorthand At := ‖Vs(t)‖W 1,∞(s(t))
, there holds∫

s(t)

div
(
ψ s(t)(θ)g̃

(
s(t), θ

)
Vs(t)(θ)

)
dθ

≤ At

(∫
s(t)

∣∣∇(
ψ s(t)(θ)g̃

(
s(t), θ

))∣∣dθ +
∫

s(t)

∣∣ψ s(t)(θ)
∣∣g̃(

s(t), θ
)

dθ

)

≤ At

[(∫
s(t)

|∇ψ s(t)|2g̃
(
s(t), θ

)
dθ

) 1
2 +

∫
s(t)

|ψ s(t)|
(
g̃
(
s(t), θ

) + ∣∣∇g̃
(
s(t), θ

)∣∣)dθ

]

≤ At

(∫


∣∣∇ψ(θ)
∣∣2

g
(
s(t), θ

)
dθ

) 1
2 (

1 + C
[
g
(
s(t), ·)] + C

[
g
(
s(t), ·)]J2

(
g̃
(
s(t), ·))).

By plugging (5.17) and the latter estimate into (5.16), we get the following: given any ν ∈ S
m−1, for Lm−1-a.e. ξ ∈Xν

and any couple x1, x2 ∈ Iξ,ν , there holds

d

dr

∫
s(t)

ψ(θ)g̃
(
s(r), θ

)
dθ

∣∣∣∣
r=t

≤ C
[
g
(
s(t), ·)](∫



∣∣∇ψ(θ)
∣∣2

g
(
s(t), θ

)
dθ

) 1
2

J1
[
g̃
(
s(t), ·)]|x1 − x2|

+At

(∫
s(t)

∣∣∇ψ(θ)
∣∣2

g
(
s(t), θ

)
dθ

) 1
2 (

1 + C
[
g
(
s(t), ·)](1 +J2

(
g̃
(
s(t), ·))))|x1 − x2|(5.18)

for a.e. t ∈ (0,1). Now, let Gψ(·) := ∫


g(·, θ)dθ , so that |Gψ(x)| ≤ sup |ψ | for Lm-a.e. x ∈X. However, by (5.18), by
assumption and by the same argument as in the proof of Theorem 4.1, we get |∇Gψ(x)| ≤ KLip(ψ) for Lm-a.e. x ∈ X.
Again this shows that there exists a W1-Lipscthiz representative π∗(·|·) of the kernel π(·|·).
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We now let π̃(·|x) := g̃(x, ·)Ld ¬
x , which gives a representative of the kernel π(·|·). Let D be a countable dense

subset of C1
c () (in the C1() norm) and let ν ∈ S

m−1. For Lm−1-a.e. ξ ∈ Xν and any x1, x2 ∈ Iξ,ν , from (5.18) we get

�x1,x2(t) := sup

{
d

dr

∫


ψ(θ)π̃
(
dθ |s(t))∣∣∣∣

r=t

: ψ ∈ spanD,

∫


∣∣∇ψ(θ)
∣∣2

π̃
(
dθ |s(t)) ≤ 1

}

≤ |x1 − x2|‖Vs(t)‖W 1,∞(s(t))

(
1 + C

[
g
(
s(t), ·)](1 +J2

[
g
(
s(t), ·)])) + |x1 − x2|C

[
g
(
s(t), ·)]J1

[
g
(
s(t), ·)]

for a.e. t ∈ (0,1). Therefore, the estimate∫ 1

0
�x1,x2(t)dt ≤ |x1 − x2|

∫ 1

0
‖Vs(t)‖W 1,∞(s(t))

(
1 + C

[
g
(
s(t), ·)](1 +J2

[
g
(
s(t), ·)]))dt

+ |x1 − x2|
∫ 1

0
C
[
g
(
s(t), ·)]J1

[
g
(
s(t), ·)]dt ≤ K|x1 − x2|

holds for Lm−1-a.e. ξ ∈ Xν and any x1, x2 ∈ Iξ,ν . By invoking Theorem 5.1, we deduce that π̃(·|x1) and π̃(·|x2) are in
P2() and that W2(π̃(·|x1), π̃(·|x2)) ≤ K|x1 − x2|, for Lm−1-a.e. ξ ∈ Xν and any x1, x2 ∈ Iξ,ν . By the same argument
as in the proof of Theorem 4.1, the same conclusion holds for π∗(·|·), which identifies with π̃(·|·) on almost every line in
any given direction. But x �→ π∗(·|x) is W1-Lipschitz on the whole of X, so that we conclude by the argument already
explained at the end of the proof of Theorem 2.2–(iii). �

5.4. Infinite-dimensional sample space: Proof of Theorem 4.5

We next provide the proof of the results that deal with infinite-dimensional sample space from Section 4.4. In this case we
shall prove that a Lipschitz estimate holds for ‘good couples’ (x1, x2) ∈ B(Z) and then we invoke the Lipschitz extension
result from Lemma A.4 in the Appendix.

Proof of Theorem 4.5. We start by proving point (i). Let ψ ∈ C1
c () and Gψ(x) := ∫


g(x, θ)π(dθ). Given a couple

(x1, x2) ∈ B(Z), for π -a.e. θ ∈ , the map [0,1] � t �→ g(sx1,x2(t), θ) has, by assumption, the following properties: it is
absolutely continuous, and for a.e. t ∈ (0,1) the point (sx1,x2(t), θ) is a Gateaux-differentiability point of g with respect
to the x-variable. Therefore, by an application of Fubini’s theorem, we get

Gψ(x2) − Gψ(x1) =
∫



ψ(θ)
(
g
(
sx1,x2(1), θ

) − g
(
sx1,x2(0), θ

))
π(dθ) =

∫


ψ(θ)

∫ 1

0

d

dt

(
g
(
sx1,x2(t), θ

))
dtπ(dθ)

=
∫ 1

0

∫


ψ(θ)
〈
Dxg

(
sx1,x2(t), θ

)
, x2 − x1

〉
π(dθ)dt

≤ ‖x2 − x1‖V sup


|ψ | ess sup
t∈(0,1)

∫


∥∥Dxg
(
sx2,x1(t), θ

)∥∥
V′π(dθ)

≤ ‖x2 − x1‖V sup


|ψ |λ-ess sup
x∈X

∫


∥∥Dxg(x, θ)
∥∥
V′π(dθ).

In the last inequality we have used the fact that any function F : X→ R satisfies

(5.19) ess sup
t∈(0,1)

F
(
sx1,x2(t)

) ≤ λ-ess sup
x∈X

F(x),

since H1([x1, x2] ∩Z) = 0 as (x1, x2) ∈ B(Z). Therefore, we get

2 dTV
(
π(·|x2),π(·|x1)

) = sup
ψ∈Cc()

|ψ |≤1

(
Gψ(x2) − Gψ(x1)

) ≤ sup
ψ∈Cc()

|ψ |≤1

‖∇Gψ‖L∞(X)‖x1 − x2‖V ≤ K‖x1 − x2‖V

for any (x1, x2) ∈ B(Z). By invoking the extension result from Lemma A.4, the mapping x �→ π(·|x) ∈ P() admits a
Lipschitz continuous extension X � x �→ π∗(·|x) ∈P() with respect to the total variation distance. Since π() = 1, the
continuity in total variation also shows that π∗(|x) = 1 for any x ∈ X. This ends the proof of (i).

The result in point (ii) is obtained by introducing the Poincaré inequality (2.2) in the computations of the proof of point
(i), as done in the proof of Theorem 2.2–(ii).
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Let us conclude by proving (iii). The proof is similar to the one of Theorem 2.2–(iii). Let D denote a countable dense
subset of C1

c () (in the C1() norm), let Gψ(x) := ∫


ψ(θ)g(x, θ)π(dθ). Let us consider a couple (x1, x2) ∈ B(Z).
Thanks to the assumptions, we have the absolute continuity of the map t �→ g(sx1,x2(t), θ) for π -a.e. θ ∈  and we may
apply Lemma A.2 from the Appendix, so that the map t �→ ∫


ψ(θ)g(sx1,x2(t), θ)π(dθ) is absolutely continuous for any

ψ ∈D and we may differentiate under integral sign to get for a.e. t ∈ (0,1)

d

dr

∫


ψ(θ)g
(
sx1,x2(r), θ

)
π(dθ)

∣∣∣∣
r=t

=
∫



ψ(θ)

(
d

dt
g
(
sx1,x2(t), θ

))
π(dθ).

As usual, the L1-null set of non-differentiability points of the map t �→ ∫


ψ(θ)g(sx1,x2(t), θ)dθ is independent of ψ ∈D,
since D is countable. By considering the Gateaux-differentiability property of g, we get, for a.e. t ∈ (0,1),

d

dr

∫


ψ(θ)g
(
sx1,x2(r), θ

)
π(dθ)

∣∣∣∣
r=t

≤ ‖x1 − x2‖V
∫



∣∣ψ(θ)
∣∣∥∥Dxg

(
sx1,x2(t), θ

)∥∥
V′π(dθ).

Hence, combining the Cauchy–Schwarz and the Poincaré inequality (2.2), we obtain

d

dr

∫


ψ(θ)g
(
sx1,x2(r), θ

)
π(dθ)

∣∣∣∣
r=t

= inf
a∈R

d

dr

∫


(
ψ(θ) − a

)
g
(
sx1,x2(r), θ

)
π(dθ)

∣∣∣∣
r=t

≤ ‖x1 − x2‖V
(∫



‖Dxg(sx1,x2(t), θ)‖2
V′

g(sx1,x2(t), θ)
π(dθ)

) 1
2

inf
a∈R

(∫


∣∣ψ(θ) − a
∣∣2

g
(
sx1,x2(t), θ

)
π(dθ)

) 1
2

≤ ‖x1 − x2‖VC
[
g
(
sx1,x2(t), ·

)
π

](∫


∣∣∇ψ(θ)
∣∣2

g
(
sx1,x2(t), θ

)
π(dθ)

) 1
2

Jπ

[
g
(
sx1,x2(t), ·

)]
.

Whence,

�x1,x2(t) := sup
ψ∈spanD

{
d

dr

∫


ψ(θ)g
(
sx1,x2(r), θ

)
π(dθ)

∣∣∣∣
r=t

:
∫



∣∣ψ(θ)
∣∣2

g
(
sx1,x2(t), θ

)
dθ ≤ 1

}

≤ C
[
g
(
sx1,x2(t), ·

)
π

]
Jπ

[
g
(
sx1,x2(t), ·

)]‖x1 − x2‖V.

Combining the latter estimate with (5.19), we conclude that for any (x1, x2) ∈ B(Z) there holds∫ 1

0
�x1,x2(t)dt ≤ ‖x1 − x2‖V

∫ 1

0
C
[
g
(
sx1,x2(t), ·

)
π

]
Jπ

[
g
(
sx1,x2(t), ·

)
π

]
dt ≤ K‖x1 − x2‖V.

Hence, an application of Theorem 5.1 shows that x �→ π(·|x) satisfies the desired estimate for any (x1, x2) ∈ B(Z). The
Lipschitz extension property from Lemma A.4, applied to the complete metric space (P2(),W2), yields the result. �

Appendix

A.1. A proof of Reynolds transport formula

We give here a proof of some useful calculus formulae that are often needed through the paper. The following is a proof
of Reynolds transport theorem, see also, for instance, [53, Théorèm 5.2.2] or [51, Section 10]. The proof is given for
domains that vary according to a regular motion as defined in Section 5.1. In the following lemma, we make use of the
notation C1

a() := {ψ + a : a ∈ R,ψ ∈ C1
c ()} where, as usual,  is an open connected subset of Rd .

Lemma A.1. Let g̃ ∈ W 1,1((a, b) × ). Let [a, b] × ∗ � (t, θ) �→ �t(θ) ∈ R
d be a regular motion in  according to

Definition 5.3, with t := �t(∗). Then (any ACL representative of) g̃ is such that [a, b] � t �→ ∫
t

ψ(θ)g̃(t, θ)dθ is

absolutely continuous for any ψ ∈ C1
a(). Moreover, given ψ ∈ C1

a() there holds for a.e. t ∈ (a, b)

d

dt

∫
t

ψ(θ)g̃(t, θ)dθ =
∫

t

ψ(θ)∂t g̃(t, θ)dθ +
∫

t

∇ · (ψ(θ)g̃(t, θ)(∂t�t ◦ �t)(θ)
)

dθ,
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where �t : t → ∗ is the inverse of �t . If ψ ∈ C1
c () we also have for a.e. t ∈ (a, b)

d

dt

∫
t

ψ(θ)g̃(t, θ)dθ =
∫

t

ψ(θ)∂t g̃(t, θ)dθ +
∫

∂t

ψ(σ )g̃(t, σ )nt (σ ) · (∂t�t ◦ �t)(σ )Hd−1(dσ),

where nt denotes the exterior normal to t , and the L1
loc(∂t ) boundary trace of g̃(t, ·) on ∂t appears in the last term.

Proof. As �t is a global diffeomorphism of ∗ onto t for any t ∈ [a, b], then (i,�t ) is a global diffeomorphism of
(a, b) × ∗ onto {(t, θ) ∈ (a, b) × ◦

 : θ ∈ t }, whose Jacobian determinant is bounded away from 0 and +∞ (tanks to
the assumptions in Definition 5.3). Thus, g̃ ◦ (i,�t ) ∈ W 1,1((a, b) × ∗).

Let ψ ∈ C1
a(). By change of variables we have for a.e.t ∈ (a, b)

(A.1)
∫

t

ψ(θ)g̃(t, θ)dθ =
∫

∗
g̃
(
t,�t (θ)

)
ψ

(
�t(θ)

)
det∇�t(θ)dθ.

By distributional chain rule we have ∂t g̃(t,�t (θ)) + ∇g̃(t,�t (θ)) · ∂t�t (θ) = d
dt

g̃(t,�t (θ)) and similarly

d

dt

[
g̃
(
t,�t (θ)

)
ψ

(
�t(θ)

)
det∇�t(θ)

]
= ψ

(
�t(θ)

)
det∇�t(θ)

d

dt
g̃
(
t,�t (θ)

)
+ g̃

(
t,�t (θ)

)
det∇�t(θ)∇ψ

(
�t(θ)

) · ∂t�t (θ) + g̃
(
t,�t (θ)

)
ψ

(
�t(θ)

)
Tr

(
(∂t∇�t)(∇�t)

−1)det∇�t,

where we used the identity d
dt

det∇�t = Tr((∂t∇�t)(∇�t)
−1)det∇�t (with Tr denoting matrix trace). Therefore,

the assumptions in Definition 5.3 show that the map (t, θ) �→ hψ(t, θ) := g̃(t,�t (θ))ψ(�t (θ))det∇�t(θ) belongs to
L1((a, b) × ∗) together with ∂thψ . We conclude that, for a.e. θ ∈ ∗, the map t �→ hψ(t, θ) is in W 1,1(a, b), hence
absolutely continuous up to defining it through a representative of g̃ ◦ (i,�t ) ∈ W 1,1((a, b)×∗) with the same property:
then, by the fundamental theorem of calculus and by Fubini theorem we have for a ≤ s < t ≤ b

(A.2)
∫

∗

(
hψ(t, θ) − hψ(s, θ)

)
dθ =

∫
∗

∫ t

s

∂thψ(r, θ)dr dθ =
∫ t

s

∫
∗

∂thψ(r, θ)dθ dr

and this shows that hψ(t, ·) ∈ L1(∗) for any t ∈ [a, b] and that t �→ ∫
∗ hψ(t, θ)dθ is absolutely continuous on [a, b].

We claim that if g̃ is a (not relabeled) ACL representative of g̃, then t �→ ∫
t

ψ(θ)g̃(t, θ) dθ is indeed absolutely
continuous on [a, b]. It is enough to check that it is continuous, since we have just shown that the right hand side of (A.1)
has an absolutely continuous representative on [a, b]. Assuming wlog that a ≤ s < t ≤ b, we have g̃(t, ·) ∈ L1() for
any t ∈ [a, b] as well as the absolute continuity of t �→ ∫


g̃(t, θ) dθ , since and ∂t g̃ ∈ L1((a, b) × ) and Fubini theorem

implies as above ∫


g̃(t, θ)dθ −
∫



g̃(s, θ)dθ =
∫ t

s

∫


∂t g̃(t, θ)dθ dt.

Then, again by Fubini theorem we get

∫
t

ψ(θ)g̃(t, θ)dθ −
∫

s

ψ(θ)g̃(s, θ)dθ =
∫



ψ(θ)(1t − 1s )g̃(t, θ)dθ +
∫ t

s

∫
s

ψ(θ)∂g̃(t, θ)dt,

where the last term vanishes as s → t since ψ is bounded and ∂t g̃ ∈ L1((a, b) × ). The first term in the right hand side
vanishes as well as s → t thanks to dominated convergence, since g̃(t, ·) ∈ L1() and since the pointwise converges of
1s to 1t easily follows from the assumptions in Definition 5.3. The claim is proved.

Dividing (A.2) by s and using the Lebesgue points theorem, we see that for a.e. t ∈ (a, b) there holds

d

dt

∫
∗

hψ(t, θ)dθ =
∫

∗
∂thψ(t, θ)dθ.
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Since we can take the time derivative inside the integral sign, we have by change of variables and by the identity (∇�t)
−1 ◦

�t = ∇�t , and with the notation Jt = det∇�t (so that d
dt

Jt = Tr((∂t∇�t)(∇�t)
−1)det∇�t ),

d

dt

∫
t

ψ(θ)g̃(t, θ)dθ = d

dt

∫
t

hψ(t, θ)dθ = d

dt

∫
∗

g̃
(
t,�t (θ)

)
ψ

(
�t(θ)

)
Jt (θ)dθ

=
∫

∗

(
Jt (θ)

d

dt

(
g̃
(
t,�t (θ)

)
ψ

(
�t(θ)

)) + g̃
(
t,�t (θ)

)
ψ

(
�t(θ)

) d

dt
Jt (θ)

)
dθ

=
∫

t

∂t g̃(t, θ)ψ(θ)dθ +
∫

t

∇ · (g̃(t, θ)ψ(θ)∂t�t

(
�t(θ)

))
dθ,

for a.e. t ∈ (a, b). By the divergence theorem, the proof is concluded. �

Of course, if t ≡  for all t , we have that �t is the identity map for any t . Lemma A.1 holds and Reynolds trans-
port formula reduces to differentiation under integral sign. However, in such case we may extend the result to general
probability measures on , without requiring a density. We have the following standard result.

Lemma A.2. Let (,T ,π) be a measure space, with π a σ -finite measure. Let g : [a, b] ×  → R. Suppose that

(i) g(·, θ) ∈ AC([a, b]) for π -a.e. θ ∈  and g(t, ·) ∈ L1
π () for all t ∈ [a, b];

(ii)
∫ b

a

∫


|∂tg(t, θ)|π(dθ)dt < +∞.

Then the map t �→ ∫


ψ(θ)g(t, θ)π(dθ) is absolutely continuous on [a, b] for any bounded continuous function ψ on .
In particular, if ψ is a bounded continuous function on  there holds a.e. on (a, b)

d

dt

∫


ψ(θ)g(t, θ)π(dθ) =
∫



ψ(θ)∂tg(t, θ)π(dθ).

Proof. By assumption (i), g is a Carathéodory function, hence (dt ⊗ π)-measurable, moreover g is (classically) par-
tially differentiable with respect to t at (dt ⊗ π)-a.e. (t, θ) ∈ (a, b) × , and then, by assumption (ii), we have
∂tg ∈ L1

dt⊗π ((a, b) × ). For any a ≤ t1 < t2 ≤ b, assumption (i) entails that g(t2, θ) − g(t1, θ) = ∫ t2
t1

∂tg(t, θ)dt holds

for π -a.e. θ ∈ , the mapping t �→ ∂tg(t, θ) being in L1(a, b) for π -a.e θ ∈ . Thanks to (ii) and the boundedness of ψ ,
the map t �→ ∫


ψ(θ)∂tg(t, θ)π(dθ) belongs to L1(a, b), and we may apply Fubini theorem to obtain for a ≤ t1 < t2 ≤ b

∫


ψ(θ)
(
g(t2, θ) − g(t1, θ)

)
π(θ) =

∫


ψ(θ)

(∫ t2

t1

∂tg(t, θ)

)
π(dθ) =

∫ t2

t1

∫


ψ(θ)∂tg(t, θ)π(dθ)dt.

This shows that the map t �→ ∫


ψ(θ)g(t, θ)π(dθ) is an AC([a, b]) map. Finally, since the map t �→∫


ψ(θ)∂tg(t, θ)π(dθ) is in L1(a, b) and g(·, θ) ∈ AC([a, b]) for π -a.e. θ ∈ , we apply Fubini once more to get

∫


ψ(θ)∂tg(t, θ)π(dθ) = d

dt

∫


ψ(θ)
(
g(t, θ) − g(t0, θ)

)
π(dθ) = d

dt

∫


ψ(θ)g(t, θ)π(dθ),

for t0 ∈ (a, b) and for a.e. t in (a, b), which completes the proof. �

A.2. Lipschitz continuous extensions

We provide the proof of a Lipschitz extension result, namely Lemma A.4. It is stated in a general framework, where V,X

and λ are as in Section 4.4.

Lemma A.3. Let Z be a subset of X with λ(Z) = 0. Then, for any x ∈ X \ Z, one has λ(Kx) = 0, where Kx := {y ∈
X \Z :H1([x, y] ∩Z) > 0}.

Proof. Suppose by contradiction that there exists x ∈ X \Z such that λ(Kx) > 0. Then there exists a bounded set U in X

such that λ(Kx ∩U) > 0. Moreover, by definition of Kx , for every y ∈Kx there holds H1([y, x]∩Z) > 0, which together



1808 E. Dolera and E. Mainini

with λ(Kx ∩U) > 0 implies

0 <

∫
Kx∩U

H1([y, x] ∩Z
)
λ(dy) =

∫
Kx∩U

‖x − y‖
∫ 1

0
1Z

(
(1 − t)y + tx

)
dtλ(dy)

≤ sup
y∈U

‖x − y‖
∫ 1

0

∫
Kx∩U

1 1
1−t

(Z−tx)
(y)λ(dy)dt,

where the last inequality is due to Fubini’s theorem. But this is a contradiction, since the right-hand side is equal to zero,
being the set 1

1−t
(Z− tx) of zero λ-measure for all t ∈ (0,1). �

Lemma A.4 (Lipschitz Extension). Let Z be a λ-null subset of X and let B(Z) be defined by (4.16). Let (S,dS) be a
complete metric space. Let f :X \Z → S. If

(A.3) dS

(
f (x), f (y)

) ≤ L‖x − y‖ ∀(x, y) ∈ B(Z)

holds for some L ≥ 0, then f admits a Lipschitz extension to the whole of X, with the same Lipschitz constant L.

Proof. For every x ∈ X \Z, let Kx be defined as in Lemma A.3. First, we prove that f is Lipschitz-continuous on X \Z.
In fact, fix two points x, y in X \ Z, and choose a sequence {ξn}n≥1 ⊂ K

c
x ∩ K

c
y ∩ Z

c converging to x. This choice is
possible since Lemma A.3 shows that λ(Kx ∪Ky ∪Z) = 0, implying that Kc

x ∩K
c
y ∩Z

c is dense in X. Moreover, notice
that (ξn, x) ∈ B(Z) and (ξn, y) ∈ B(Z) for every n, since ξn belongs to both K

c
x \ Z and K

c
y \ Z. Then, invoke (A.3) to

obtain, for every n ∈N, that dS(f (x), f (y)) ≤ dS(f (ξn), f (x))+ dS(f (ξn), f (y)) ≤ L(‖x − ξn‖+‖ξn −y‖). By taking
the limit as n → +∞, we get the desired Lipschitz property on X\Z. In conclusion, the existence of a Lipschitz extension
with same constant L follows from the standard extension result with a dense domain, being (S, dS) complete. �

A.3. Scaling estimates of the Poincaré constant

In view of the applications of our theorems, the log-concavity condition and its variants are the more natural tools, mostly
when considering exponential statistical models (Section 2.2), exchangeability (Section 3.1) and Bayesian consistency
(Section 3.3). Accordingly, we summarize some estimates of the Poincaré constant in the following statement, providing
some extension of the results in [8]. In particular, in view of our results about Bayesian consistency in Section 3.3, in this
statement we highlight some scaling properties of the Poincaré constant that arise by multiplying V by some large n ∈ N.

Proposition A.5. Let V,U ∈ C2(Rd) be bounded from below and such that
∫
Rd e−V (θ)−U(θ) dθ < +∞. Let μn(dθ) :=

e−nV −U dθ , for any n ∈ N. The following statements about the squared Poincaré constant of μn hold.

(1) Suppose that α > 0 and h ∈ R exist such that Hess(V ) ≥ αI on Rd and Hess(U) ≥ hI on Rd in the sense of
quadratic forms. Then C2[μn] ≤ (nα + h)−1 for every n > −h/α.

(2) Suppose that there exist α > 0, c > 0, R > 0, h ∈ R, � ∈ R such that the following conditions hold: Hess(V (θ)) ≥
αI and Hess(U(θ)) ≥ hI in the sense of quadratic forms whenever |θ | ≤ R, moreover θ · ∇V (θ) ≥ c|θ | and θ · ∇U(θ) ≥
�|θ | whenever |θ | ≥ R. Then, for every n > (−h/α) ∨ ((dR + 1 − �)/c),

C2[μn] ≤ αn + h + (cn + � − dR + nVR + UR)CR

(αn + h)(cn + � − 1 − dR)
,

where dR := (d − 1)/R, VR := supBR
|∇V |, UR := supBR

|∇U | and CR is an explicit universal constant only depending
on R.

(3) Suppose that there exist α > 0, c1 > 0, c2 > 0, R > 0, h ∈ R such that the following conditions hold: Hess(V (θ)) ≥
αI and Hess(U(θ)) ≥ hI in the sense of quadratic forms whenever |θ | ≤ R, and

(A.4)
∣∣∇V (θ)

∣∣2 ≥ 2c1 + c2
[
�V (θ) + ∇V (θ) · ∇U(θ)

]
+

whenever |θ | ≥ R. Then, for every n > (1 + 1/c2) ∨ (−h/α),

C2[μn] ≤ αn + h + eωR (c1n + V ∗
R + WR)

(αn + h)c1n
,

where V ∗
R := supBR

|�V |, WR := supBR
|∇U ||∇V | and ωR := supBR

V − infRd V .
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By choosing n = 1 and U ≡ 0 in Proposition A.5, we obtain a direct estimate for the Poincaré constant of a given
finite measure of the form μ(dθ) = e−V dθ , where V is bounded from below (see also [8]). Besides the Bakry–Emery
criterion, which requires the Hessian of V to be bounded away from zero, perturbations of convex functions are included.
For instance V (θ) = 1

2 |θ |2 − 2 cos |θ | satisfies the assumptions of points (2) and (3) with R = 1.

Proof of Proposition A.5. Point (1) is the Bakry–Emery criterion, see for instance [66, Theorem 3.1].
Let us consider point (2). We shall apply the arguments from [8]. Let Vn := nV + U . First of all, if |θ | ≥ R we get

from the assumptions

(A.5) θ · Vn(θ) ≥ (cn + �)|θ |.
Let W(θ) be a C2(Rd) function such that W ≥ 1 on R

d and such that W(θ) = e|θ | if |θ | ≥ R. Let CR := supBr
|W | +

supBR
|∇W | + supBR

|�W |. Let us introduce the diffusion operator LVn[φ] := �φ − 〈∇φ,∇Vn〉. A computation shows
that if |θ | ≥ R there holds

LVnW =
(

d − 1

|θ | + 1 − θ

|θ | · ∇Vn(θ)

)
W(θ).

Let τn := cn + � − 1 − dR , so that τn > 0 as soon as n > (dR + 1 − �)/c. If |θ | ≥ R, from (A.5) we deduce LVnW(θ) ≤
−τnW(θ). If |θ | ≤ R, we estimate as

LVnW(θ) = −τnW(θ) + τnW(θ) +LVnW(θ) ≤ −τnW(θ) + τnW(θ) + ∣∣�W(θ)
∣∣ + ∣∣∇W(θ)

∣∣∣∣∇Vn(θ)
∣∣

≤ −τnW(θ) + CR(1 + τn + nVR + UR).

All in all we have W(θ) ≥ 1 and LVnW(θ) ≤ −τnW(θ) + bnχBR
(θ) for every θ ∈ R

d , where bn := CR(1 + τn + nVR +
UR). By [8, Theorem 1.4] we conclude that C2(μn) ≤ 1

τn
(1 + bnkR), where kR is the squared Poincaré constant of the

measure e−VnLd ¬
BR . Since we have by assumption HessVn ≥ (nα + h)I in the sense of quadratic forms on BR , the

Bakry–Emery criterion yields kR ≤ (αn + h)−1 as soon as n > −h/α. The conclusion follows.
Let us prove point (3). The argument is similar. Let W(θ) = exp{V (θ) − infRd V }, θ ∈ R

d . Let once more Vn :=
nV + U and LVn[φ] := �φ − 〈∇φ,∇Vn〉. We have after a direct computation �W = W |∇V |2 + W�V and then

(A.6) LVnW = (
(1 − n)

∣∣∇V (θ)
∣∣2 + �V (θ) − ∇U(θ) · ∇V (θ)

)
W(θ), θ ∈R

d .

Thanks to assumption (A.4) we have (n − 1)|∇V (θ)|2 ≥ �V (θ) − ∇V (θ) · ∇U(θ) + nc1 whenever |θ | ≥ R and n >

1 + 1/c2. Therefore, if n > 1 + 1/c2, from (A.6) we obtain LVnW(θ) ≤ −c1nW(θ) whenever |θ | ≥ R. On the other hand,
if |θ | ≤ R we easily estimate from (A.6) as

LVnW(θ) = −c1nW(θ) + c1nW(θ) +LVnW(θ) ≤ −c1nW(θ) + eωR
(
c1n + V ∗

R + WR

)
.

Then, we have W(θ) ≥ 1 and LVnW(θ) ≤ −c1nW(θ)+ b̃nχBR
(θ) for every θ ∈ R

d , where b̃n := +eωR (c1n+V ∗
R +WR).

By invoking [8, Theorem 1.4] and the Bakry–Emery criterion, the conclusion follows by repeating the same argument in
the end of the proof of point (2). �
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