In this work we investigated the possibility of using living cells as stress sensing material in biosensors, in the light of the three Rs principle – Replacement, Reduction and Refinement . This approach requires the necessity to cultivate them on biocompatible electrical conducting substrate and to insert the circuit into a culture chamber that must assure both the transport of oxygen and the diffusion of the medium containing the potential stressor to the cells, without modifying their response and the structure of the culture. To this aim we fabricated nano-patterned substrates of anodic porous alumina to be used for enhancing cell adhesion, and culture chambers made in polylactic acid. Sea-urchin cells (coelomocytes) were cultured on these substrates at different times of 1, 3 and 5 days in vitro. Since these cells are progenitors of immune cells in vertebrate systems (blood cells), they carry out similar functions. For this reason, although they can differ considerably from vertebrates, they have been proved to be very promising sentinels of environmental water quality

Adhesion of sea-urchin living cells on nano-patterned anodic porous alumina

Carla Falugi;Chiara Gambardella;Marco Salerno;Matteo Neviani;Ombretta Paladino
2019-01-01

Abstract

In this work we investigated the possibility of using living cells as stress sensing material in biosensors, in the light of the three Rs principle – Replacement, Reduction and Refinement . This approach requires the necessity to cultivate them on biocompatible electrical conducting substrate and to insert the circuit into a culture chamber that must assure both the transport of oxygen and the diffusion of the medium containing the potential stressor to the cells, without modifying their response and the structure of the culture. To this aim we fabricated nano-patterned substrates of anodic porous alumina to be used for enhancing cell adhesion, and culture chambers made in polylactic acid. Sea-urchin cells (coelomocytes) were cultured on these substrates at different times of 1, 3 and 5 days in vitro. Since these cells are progenitors of immune cells in vertebrate systems (blood cells), they carry out similar functions. For this reason, although they can differ considerably from vertebrates, they have been proved to be very promising sentinels of environmental water quality
File in questo prodotto:
File Dimensione Formato  
ECAB.pdf

accesso aperto

Tipologia: Abstract
Dimensione 958.01 kB
Formato Adobe PDF
958.01 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/995001
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact