In recent years, the emerging framework of the Internet of Things has been leading the technological landscape in a number of different fields and applications, from autonomous and connected vehicles to wearable devices. The healthcare system is benefiting from this continuously evolving environment since it leverages the opportunities offered by the ubiquitous and pervasive presence of connected objects and smart services. This attitude has given rise to the concept of eHealth, thus enabling new approaches and solutions for healthcare. In this framework we propose SmartPants, an IoT-based wireless system specifically designed for the remote rehabilitation of lower limbs in poststroke patients. The platform consists of multiple nodes used to monitor physical therapy and a software platform that provides real-time feedback on the execution by recognizing the type of exercise currently being performed by the patient. Our experimental results, evaluated through appropriate metrics, show that the proposed movement recognition algorithm provides very good results in terms of classification performance, independent of the considered classifier, with an average true positive rate of about 91 percent and an overall accuracy of around 96.5 percent.

When eHealth Meets IoT: A Smart Wireless System for Post-Stroke Home Rehabilitation

Igor Bisio;Chiara Garibotto;Fabio Lavagetto;Andrea Sciarrone
2019-01-01

Abstract

In recent years, the emerging framework of the Internet of Things has been leading the technological landscape in a number of different fields and applications, from autonomous and connected vehicles to wearable devices. The healthcare system is benefiting from this continuously evolving environment since it leverages the opportunities offered by the ubiquitous and pervasive presence of connected objects and smart services. This attitude has given rise to the concept of eHealth, thus enabling new approaches and solutions for healthcare. In this framework we propose SmartPants, an IoT-based wireless system specifically designed for the remote rehabilitation of lower limbs in poststroke patients. The platform consists of multiple nodes used to monitor physical therapy and a software platform that provides real-time feedback on the execution by recognizing the type of exercise currently being performed by the patient. Our experimental results, evaluated through appropriate metrics, show that the proposed movement recognition algorithm provides very good results in terms of classification performance, independent of the considered classifier, with an average true positive rate of about 91 percent and an overall accuracy of around 96.5 percent.
File in questo prodotto:
File Dimensione Formato  
08938180.pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 385.51 kB
Formato Adobe PDF
385.51 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/992879
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 27
social impact