The rational design of supramolecular polymers that can adapt or respond in time to specific stimuli in a controlled way is interesting for many applications, but this requires understanding the molecular factors that make the material faster or slower in responding to the stimulus. To this end, it is necessary to study the dynamic adaptive properties at submolecular resolution, which is difficult at an experimental level. Here we show coarse-grained molecular dynamics simulations (<5 angstrom resolution) demonstrating how the dynamic adaptivity and stimuli responsiveness of a supramolecular polymer is controlled by the intrinsic dynamics of the assembly, which is in turn determined by the structure of the monomers. As a representative case, we focus on a water-soluble 1,3,5-benzenetricarboxamide (BTA) supramolecular polymer incorporating (charged) receptor monomers, experimentally seen to undergo dynamic dustering following the superselective binding to a multivalent recruiter. Our simulations show that the dynamic reorganization of the supramolecular structure proceeds via monomer diffusion on the dynamic fiber surface (exchange within the fiber). Rationally changing the structure of the monomers to make the fiber surface more or less dynamic allows tuning the rate of response to the stimulus and of supramolecular reconfiguration. Simple in silico experiments draw a structure dynamics property relationship revealing the key factors underpinning the dynamic adaptivity and stimuli-responsiveness of these supramolecular polymers. We come out with clear evidence that to master the bioinspired properties of these fibers, it is necessary to control their intrinsic dynamics, while the high-resolution of our molecular models permits us to show how.

How the Dynamics of a Supramolecular Polymer Determines Its Dynamic Adaptivity and Stimuli-Responsiveness: Structure-Dynamics-Property Relationships from Coarse-Grained Simulations

Bochicchio D.;
2018-01-01

Abstract

The rational design of supramolecular polymers that can adapt or respond in time to specific stimuli in a controlled way is interesting for many applications, but this requires understanding the molecular factors that make the material faster or slower in responding to the stimulus. To this end, it is necessary to study the dynamic adaptive properties at submolecular resolution, which is difficult at an experimental level. Here we show coarse-grained molecular dynamics simulations (<5 angstrom resolution) demonstrating how the dynamic adaptivity and stimuli responsiveness of a supramolecular polymer is controlled by the intrinsic dynamics of the assembly, which is in turn determined by the structure of the monomers. As a representative case, we focus on a water-soluble 1,3,5-benzenetricarboxamide (BTA) supramolecular polymer incorporating (charged) receptor monomers, experimentally seen to undergo dynamic dustering following the superselective binding to a multivalent recruiter. Our simulations show that the dynamic reorganization of the supramolecular structure proceeds via monomer diffusion on the dynamic fiber surface (exchange within the fiber). Rationally changing the structure of the monomers to make the fiber surface more or less dynamic allows tuning the rate of response to the stimulus and of supramolecular reconfiguration. Simple in silico experiments draw a structure dynamics property relationship revealing the key factors underpinning the dynamic adaptivity and stimuli-responsiveness of these supramolecular polymers. We come out with clear evidence that to master the bioinspired properties of these fibers, it is necessary to control their intrinsic dynamics, while the high-resolution of our molecular models permits us to show how.
File in questo prodotto:
File Dimensione Formato  
Bochicchio - How the dynamics.pdf

accesso chiuso

Descrizione: Articolo principale
Tipologia: Documento in versione editoriale
Dimensione 3.95 MB
Formato Adobe PDF
3.95 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/977502
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 20
social impact