This paper describes a simplified framework to create dynamic models of SOFC/Gas Turbine Hybrid Systems. After some physical considerations on global SOFC/GT structure, the work focuses on the modelling approach. It embodies some empirical parameters, which can be derived from operating data or detailed simulation analysis. The framework results in a hybrid model – partly physics-based, partly data-driven – which covers a large range of working conditions. The resulting simplicity and robustness of the approach allows the potential adoption in different on-field applications such as fast response models for operators, control system development and validation, model-based controllers, as well as for dynamic performance evaluations. This last application is shown at the end of the paper, where the response of the model is compared with a real Cyber-Physical SOFC/Gas Turbine Emulator installed at the National Energy Technology Laboratory (NETL), Morgantown (West Virginia, USA).

SOFC/Gas Turbine Hybrid System: A simplified framework for dynamic simulation

Rossi I.;Traverso A.;Tucker D.
2019-01-01

Abstract

This paper describes a simplified framework to create dynamic models of SOFC/Gas Turbine Hybrid Systems. After some physical considerations on global SOFC/GT structure, the work focuses on the modelling approach. It embodies some empirical parameters, which can be derived from operating data or detailed simulation analysis. The framework results in a hybrid model – partly physics-based, partly data-driven – which covers a large range of working conditions. The resulting simplicity and robustness of the approach allows the potential adoption in different on-field applications such as fast response models for operators, control system development and validation, model-based controllers, as well as for dynamic performance evaluations. This last application is shown at the end of the paper, where the response of the model is compared with a real Cyber-Physical SOFC/Gas Turbine Emulator installed at the National Energy Technology Laboratory (NETL), Morgantown (West Virginia, USA).
File in questo prodotto:
File Dimensione Formato  
2019-TPG-6.pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 1.83 MB
Formato Adobe PDF
1.83 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/973515
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 29
social impact