We demonstrate the laser excitation of the n=3 state of positronium (Ps) in vacuum. A combination of a specially designed pulsed slow positron beam and a high-efficiency converter target was used to produce Ps. Its annihilation was recorded by single-shot positronium annihilation lifetime spectroscopy. Pulsed laser excitation of the n=3 level at a wavelength λ≈205 nm was monitored via Ps photoionization induced by a second intense laser pulse at λ=1064 nm. About 15% of the overall positronium emitted into vacuum was excited to n=3 and photoionized. Saturation of both the n=3 excitation and the following photoionization was observed and explained by a simple rate equation model. The positronium's transverse temperature was extracted by measuring the width of the Doppler-broadened absorption line. Moreover, excitation to Rydberg states n=15 and 16 using n=3 as the intermediate level was observed, giving an independent confirmation of excitation to the 3P3 state.

Laser excitation of the n=3 level of positronium for antihydrogen production

Caravita R.;Di Noto L.;Krasnicky D.;Lagomarsino V.;Sorrentino F.;
2016-01-01

Abstract

We demonstrate the laser excitation of the n=3 state of positronium (Ps) in vacuum. A combination of a specially designed pulsed slow positron beam and a high-efficiency converter target was used to produce Ps. Its annihilation was recorded by single-shot positronium annihilation lifetime spectroscopy. Pulsed laser excitation of the n=3 level at a wavelength λ≈205 nm was monitored via Ps photoionization induced by a second intense laser pulse at λ=1064 nm. About 15% of the overall positronium emitted into vacuum was excited to n=3 and photoionized. Saturation of both the n=3 excitation and the following photoionization was observed and explained by a simple rate equation model. The positronium's transverse temperature was extracted by measuring the width of the Doppler-broadened absorption line. Moreover, excitation to Rydberg states n=15 and 16 using n=3 as the intermediate level was observed, giving an independent confirmation of excitation to the 3P3 state.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/964303
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 66
  • ???jsp.display-item.citation.isi??? 61
social impact