The NeNa and the MgAl cycles play a fundamental role in the nucleosynthesis of asymptotic giant branch stars undergoing hot bottom burning. The 23Na(p, γ)24Mgreaction links these two cycles and a precise determination of its rate is required to correctly estimate the contribution of these stars to the chemical evolution of various isotopes of Na, Mg and Al. At temperatures of 50 <110 MK, narrow resonances at Ep=140and 251 keVare the main contributors to the reaction rate, in addition to the direct capture that dominates in the lower part of the temperature range. We present new measurements of the strengths of these resonances at the Laboratory for Underground Nuclear Astrophysics (LUNA). We have used two complementary detection approaches: high efficiency with a 4πBGO detector for the 140keV resonance, and high resolution with a HPGe detector for the 251keV resonance. Thanks to the reduced cosmic ray background of LUNA, we were able to determine the resonance strength of the 251keV resonance as ωγ=482(82)μeVand observed new gamma ray transitions for the decay of the corresponding state in 24Mgat Ex=11931 keV. With the highly efficient BGO detector, we observed a signal for the 140keV resonance for the first time in a direct measurement, resulting in a strength of ωγ140=1.46+0.58−0.53neV(68% CL). Our measurement reduces the uncertainty of the 23Na(p, γ)24Mgreaction rate in the temperature range from 0.05 to 0.1GK to at most +50%−35%at 0.07GK. Accordingly, our results imply a significant reduction of the uncertainties in the nucleosynthesis calculations.

Direct measurements of low-energy resonance strengths of the 23Na(p,γ)24Mg reaction for astrophysics

F. Cavanna;P. Corvisiero;F. Ferraro;P. Prati;S. Zavatarelli.
2019-01-01

Abstract

The NeNa and the MgAl cycles play a fundamental role in the nucleosynthesis of asymptotic giant branch stars undergoing hot bottom burning. The 23Na(p, γ)24Mgreaction links these two cycles and a precise determination of its rate is required to correctly estimate the contribution of these stars to the chemical evolution of various isotopes of Na, Mg and Al. At temperatures of 50 <110 MK, narrow resonances at Ep=140and 251 keVare the main contributors to the reaction rate, in addition to the direct capture that dominates in the lower part of the temperature range. We present new measurements of the strengths of these resonances at the Laboratory for Underground Nuclear Astrophysics (LUNA). We have used two complementary detection approaches: high efficiency with a 4πBGO detector for the 140keV resonance, and high resolution with a HPGe detector for the 251keV resonance. Thanks to the reduced cosmic ray background of LUNA, we were able to determine the resonance strength of the 251keV resonance as ωγ=482(82)μeVand observed new gamma ray transitions for the decay of the corresponding state in 24Mgat Ex=11931 keV. With the highly efficient BGO detector, we observed a signal for the 140keV resonance for the first time in a direct measurement, resulting in a strength of ωγ140=1.46+0.58−0.53neV(68% CL). Our measurement reduces the uncertainty of the 23Na(p, γ)24Mgreaction rate in the temperature range from 0.05 to 0.1GK to at most +50%−35%at 0.07GK. Accordingly, our results imply a significant reduction of the uncertainties in the nucleosynthesis calculations.
File in questo prodotto:
File Dimensione Formato  
Phys. Lett B Boeltzig Na23.pdf

accesso aperto

Tipologia: Documento in versione editoriale
Dimensione 1.12 MB
Formato Adobe PDF
1.12 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/948511
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 18
social impact