Let (R, m, K) be an F-finite Noetherian local ring which has a canonical ideal I (sic) R. We prove that if R is S-2 and H-m(d-1) (R/I) is a simple RF-module, then R is a strongly F-regular ring. In particular, under these assumptions, R is a Cohen-Macaulay normal domain.
A SUFFICIENT CONDITION FOR STRONG F-REGULARITY
De Stefani A;
2015-01-01
Abstract
Let (R, m, K) be an F-finite Noetherian local ring which has a canonical ideal I (sic) R. We prove that if R is S-2 and H-m(d-1) (R/I) is a simple RF-module, then R is a strongly F-regular ring. In particular, under these assumptions, R is a Cohen-Macaulay normal domain.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
A_sufficient_condition_for_strong_Fregularity.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Documento in Post-print
Dimensione
328.88 kB
Formato
Adobe PDF
|
328.88 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.