To interact with the environmet, it is crucial to have a clear space representation. Several findings have shown that the space around our body is split in several portions, which are differentially coded by the brain. Evidences of such subdivision have been reported by studies on people affected by neglect, on space near (peripersonal) and far (extrapersonal) to the body position and considering space around specific different portion of the body. Moreover, recent studies showed that sensory modalities are at the base of important cognitive skills. However, it is still unclear if each sensory modality has a different role in the development of cognitive skills in the several portions of space around the body. Recent works showed that the visual modality is crucial for the development of spatial representation. This idea is supported by studies on blind individuals showing that visual information is fundamental for the development of auditory spatial representation. For example, blind individuals are not able to perform the spatial bisection task, a task that requires to build an auditory spatial metric, a skill that sighted children acquire around 6 years of age. Based these prior researches, we hypothesize that if different sensory modalities have a role on the devlopment of different cognitive skills, then we should be able to find a clear correlation between availability of the sensory modality and the cognitive skill associated. In particular we hypothesize that the visual information is crucial for the development of auditory space represnetation; if this is true, we should find different spatial skill between front and back spaces. In this thesis, I provide evidences that spaces around our body are differently influenced by sensory modalities. Our results suggest that visual input have a pivotal role in the development of auditory spatial representation and that this applies only to the frontal space. Indeed sighted people are less accurated in spatial task only in space where vision is not present (i.e. the back), while blind people show no differences between front and back spaces. On the other hand, people tend to report sounds in the back space, suggesting that the role of hearing in allertness could be more important in the back than frontal spaces. Finally, we show that natural training, stressing the integration of audio motor stimuli, can restore spatial cognition, opening new possibility for rehabilitation programs. Spatial cognition is a well studied topic. However, we think our findings fill the gap regarding how the different availibility of sensory information, across spaces, causes the development of different cognitive skills in these spaces. This work is the starting point to understand the strategies that the brain adopts to maximize its resources by processing, in the more efficient way, as much information as possible.

From sensory perception to spatial cognition

AGGIUS-VELLA, ELENA
2019-02-26

Abstract

To interact with the environmet, it is crucial to have a clear space representation. Several findings have shown that the space around our body is split in several portions, which are differentially coded by the brain. Evidences of such subdivision have been reported by studies on people affected by neglect, on space near (peripersonal) and far (extrapersonal) to the body position and considering space around specific different portion of the body. Moreover, recent studies showed that sensory modalities are at the base of important cognitive skills. However, it is still unclear if each sensory modality has a different role in the development of cognitive skills in the several portions of space around the body. Recent works showed that the visual modality is crucial for the development of spatial representation. This idea is supported by studies on blind individuals showing that visual information is fundamental for the development of auditory spatial representation. For example, blind individuals are not able to perform the spatial bisection task, a task that requires to build an auditory spatial metric, a skill that sighted children acquire around 6 years of age. Based these prior researches, we hypothesize that if different sensory modalities have a role on the devlopment of different cognitive skills, then we should be able to find a clear correlation between availability of the sensory modality and the cognitive skill associated. In particular we hypothesize that the visual information is crucial for the development of auditory space represnetation; if this is true, we should find different spatial skill between front and back spaces. In this thesis, I provide evidences that spaces around our body are differently influenced by sensory modalities. Our results suggest that visual input have a pivotal role in the development of auditory spatial representation and that this applies only to the frontal space. Indeed sighted people are less accurated in spatial task only in space where vision is not present (i.e. the back), while blind people show no differences between front and back spaces. On the other hand, people tend to report sounds in the back space, suggesting that the role of hearing in allertness could be more important in the back than frontal spaces. Finally, we show that natural training, stressing the integration of audio motor stimuli, can restore spatial cognition, opening new possibility for rehabilitation programs. Spatial cognition is a well studied topic. However, we think our findings fill the gap regarding how the different availibility of sensory information, across spaces, causes the development of different cognitive skills in these spaces. This work is the starting point to understand the strategies that the brain adopts to maximize its resources by processing, in the more efficient way, as much information as possible.
26-feb-2019
File in questo prodotto:
File Dimensione Formato  
phdunige_2808765.pdf

accesso aperto

Tipologia: Tesi di dottorato
Dimensione 2.44 MB
Formato Adobe PDF
2.44 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/940911
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact