In statistical machine learning, kernel methods allow to consider infinite dimensional feature spaces with a computational cost that only depends on the number of observations. This is usually done by solving an optimization problem depending on a data fit term and a suitable regularizer. In this paper we consider feature maps which are the concatenation of a fixed, possibly large, set of simpler feature maps. The penalty is a sparsity inducing one, promoting solutions depending only on a small subset of the features. The group lasso problem is a special case of this more general setting. We show that one of the most popular optimization algorithms to solve the regularized objective function, the forward-backward splitting method, allows to perform feature selection in a stable manner. In particular, we prove that the set of relevant features is identified by the algorithm after a finite number of iterations if a suitable qualification condition holds. Our analysis rely on the notions of stratification and mirror stratifiability.

Sparse multiple kernel learning: Support identification via mirror stratifiability

Lorenzo Rosasco;Silvia Villa
2018-01-01

Abstract

In statistical machine learning, kernel methods allow to consider infinite dimensional feature spaces with a computational cost that only depends on the number of observations. This is usually done by solving an optimization problem depending on a data fit term and a suitable regularizer. In this paper we consider feature maps which are the concatenation of a fixed, possibly large, set of simpler feature maps. The penalty is a sparsity inducing one, promoting solutions depending only on a small subset of the features. The group lasso problem is a special case of this more general setting. We show that one of the most popular optimization algorithms to solve the regularized objective function, the forward-backward splitting method, allows to perform feature selection in a stable manner. In particular, we prove that the set of relevant features is identified by the algorithm after a finite number of iterations if a suitable qualification condition holds. Our analysis rely on the notions of stratification and mirror stratifiability.
File in questo prodotto:
File Dimensione Formato  
Sparse Multiple.pdf

accesso aperto

Tipologia: Documento in Post-print
Dimensione 371.08 kB
Formato Adobe PDF
371.08 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/936123
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact