This paper discusses the mechanical architecture of Elloboat, an unmanned Tracked Vehicle (TV) for launching and beaching of watercrafts and small boats (up to a length of 3.5 meters). The mechanical architecture of Elloboat comprises a central saddle connected to two lateral tracks by parallelogram linkages, which may be driven by linear or rotary actuators to lift/lower the payload. The TV is able to pick the boat form a support, to travel along the beach and to perform launching while almost completely submerged. On the contrary, during beaching, the boat is relieved from the water and then transported to storage. The Elloboat mechanical architecture is redundantly constrained and actuated. In the following, after a detailed description of the device, the TV kinematic and static behaviours according to different actuation schemes are discussed on the basis of a mobility analysis and then by multibody simulations, with rigid and flexible models of joints.

Functional Design of Elloboat, a Tracked Vehicle for Launching and Beaching of Watercrafts and Small Boats

Berselli GIOVANNI;Bruzzone LUCA;Fanghella PIETRO
2018-01-01

Abstract

This paper discusses the mechanical architecture of Elloboat, an unmanned Tracked Vehicle (TV) for launching and beaching of watercrafts and small boats (up to a length of 3.5 meters). The mechanical architecture of Elloboat comprises a central saddle connected to two lateral tracks by parallelogram linkages, which may be driven by linear or rotary actuators to lift/lower the payload. The TV is able to pick the boat form a support, to travel along the beach and to perform launching while almost completely submerged. On the contrary, during beaching, the boat is relieved from the water and then transported to storage. The Elloboat mechanical architecture is redundantly constrained and actuated. In the following, after a detailed description of the device, the TV kinematic and static behaviours according to different actuation schemes are discussed on the basis of a mobility analysis and then by multibody simulations, with rigid and flexible models of joints.
2018
9781538646434
File in questo prodotto:
File Dimensione Formato  
C2018_3.pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 5.13 MB
Formato Adobe PDF
5.13 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/935441
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact