Phosphatidylinositol-3,5-bisphosphate (PI(3,5)P2) is a low-abundance signaling lipid associated with endo-lysosomal and vacuolar membranes in eukaryotic cells. Recent studies on Arabidopsis indicated a critical role of PI(3,5)P2in vacuolar acidification and morphology during ABA-induced stomatal closure, but the molecular targets in plant cells remained unknown. By using patch-clamp recordings on Arabidopsis vacuoles, we show here that PI(3,5)P2does not affect the activity of vacuolar H+-pyrophosphatase or vacuolar H+-ATPase. Instead, PI(3,5)P2at low nanomolar concentrations inhibited an inwardly rectifying conductance, which appeared upon vacuolar acidification elicited by prolonged H+pumping activity. We provide evidence that this novel conductance is mediated by chloride channel a (CLC-a), a member of the anion/H+exchanger family formerly implicated in stomatal movements in Arabidopsis. H+-dependent currents were absent in clc-a knock-out vacuoles, and canonical CLC-a-dependent nitrate/H+antiport was inhibited by low concentrations of PI(3,5)P2. Finally, using the pH indicator probe BCECF, we show that CLC-a inhibition contributes to vacuolar acidification. These data provide a mechanistic explanation for the essential role of PI(3,5)P2and advance our knowledge about the regulation of vacuolar ion transport.

The signaling lipid phosphatidylinositol-3,5-bisphosphate targets plant CLC-a anion/H+exchange activity

Carpaneto, Armando;
2017-01-01

Abstract

Phosphatidylinositol-3,5-bisphosphate (PI(3,5)P2) is a low-abundance signaling lipid associated with endo-lysosomal and vacuolar membranes in eukaryotic cells. Recent studies on Arabidopsis indicated a critical role of PI(3,5)P2in vacuolar acidification and morphology during ABA-induced stomatal closure, but the molecular targets in plant cells remained unknown. By using patch-clamp recordings on Arabidopsis vacuoles, we show here that PI(3,5)P2does not affect the activity of vacuolar H+-pyrophosphatase or vacuolar H+-ATPase. Instead, PI(3,5)P2at low nanomolar concentrations inhibited an inwardly rectifying conductance, which appeared upon vacuolar acidification elicited by prolonged H+pumping activity. We provide evidence that this novel conductance is mediated by chloride channel a (CLC-a), a member of the anion/H+exchanger family formerly implicated in stomatal movements in Arabidopsis. H+-dependent currents were absent in clc-a knock-out vacuoles, and canonical CLC-a-dependent nitrate/H+antiport was inhibited by low concentrations of PI(3,5)P2. Finally, using the pH indicator probe BCECF, we show that CLC-a inhibition contributes to vacuolar acidification. These data provide a mechanistic explanation for the essential role of PI(3,5)P2and advance our knowledge about the regulation of vacuolar ion transport.
File in questo prodotto:
File Dimensione Formato  
40 Carpaneto_EMBORep_2017.pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 1.25 MB
Formato Adobe PDF
1.25 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/929472
Citazioni
  • ???jsp.display-item.citation.pmc??? 18
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 38
social impact