Objective: To retrospectively evaluate seizure outcome in a case-series of patients with nodular heterotopy (NH)-related epilepsy treated by stereo-EEG (SEEG)-guided radio-frequency thermocoagulation (RF-THC) of the NH. Methods: Five patients (three male, age 5-33 years) with drug-resistant focal epilepsy presented a single NH at brain MRI. Following video-EEG monitoring, patients underwent SEEG recording to better identify the epileptogenic zone. All patients received RF-THC of the NH, using contiguous contacts of the electrodes employed for recording. The contacts for RF-THC lesions were chosen according to anatomical (intranodular position) and electrical (intranodular ictal low-voltage fast activity) criteria. Results: At SEEG recordings, ictal discharge originated from the NH alone in three cases and from the NH and ipsilateral hippocampus in one case. In the remaining case, different sites of ictal onset, including the NH, were identified within the left frontal lobe. No adverse effects related to the RF-THC procedures were observed, apart from a habitual seizure that occurred during coagulation in one patient. Postprocedural sustained seizure freedom was detected in four cases (mean follow-up 33.5 months). In the case with left frontal multifocal ictal activity, RF-THC of the NH provided no benefit on seizures, and the patient is seizure-free after left frontal lobe resection. Conclusions: SEEG-guided RF-THC proved to be a safe and effective option in our small case-series of NH-related focal epilepsy. The indications to this treatment were strictly dependent on findings of intracerebral recording by SEEG, which can define the role of the NH in the generation of the ictal discharge.

Stereo-EEG-guided radio-frequency thermocoagulations of epileptogenic grey-matter nodular heterotopy

Nobili L;
2014-01-01

Abstract

Objective: To retrospectively evaluate seizure outcome in a case-series of patients with nodular heterotopy (NH)-related epilepsy treated by stereo-EEG (SEEG)-guided radio-frequency thermocoagulation (RF-THC) of the NH. Methods: Five patients (three male, age 5-33 years) with drug-resistant focal epilepsy presented a single NH at brain MRI. Following video-EEG monitoring, patients underwent SEEG recording to better identify the epileptogenic zone. All patients received RF-THC of the NH, using contiguous contacts of the electrodes employed for recording. The contacts for RF-THC lesions were chosen according to anatomical (intranodular position) and electrical (intranodular ictal low-voltage fast activity) criteria. Results: At SEEG recordings, ictal discharge originated from the NH alone in three cases and from the NH and ipsilateral hippocampus in one case. In the remaining case, different sites of ictal onset, including the NH, were identified within the left frontal lobe. No adverse effects related to the RF-THC procedures were observed, apart from a habitual seizure that occurred during coagulation in one patient. Postprocedural sustained seizure freedom was detected in four cases (mean follow-up 33.5 months). In the case with left frontal multifocal ictal activity, RF-THC of the NH provided no benefit on seizures, and the patient is seizure-free after left frontal lobe resection. Conclusions: SEEG-guided RF-THC proved to be a safe and effective option in our small case-series of NH-related focal epilepsy. The indications to this treatment were strictly dependent on findings of intracerebral recording by SEEG, which can define the role of the NH in the generation of the ictal discharge.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/928552
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 75
  • ???jsp.display-item.citation.isi??? 63
social impact