We study the multi-channel Gel'fand-Calderon inverse problem in two dimensions, i.e. the inverse boundary value problem for the equation -Delta psi + nu(x)psi = 0, x is an element of D, where nu is a smooth matrix-valued potential defined on a bounded planar domain D. We give an exact global reconstruction method for finding U from the associated Dirichlet-to-Neumann operator. This also yields a global uniqueness results: if two smooth matrix-valued potentials defined on a bounded planar domain have the same Dirichlet-to-Neumann operator then they coincide. (C) 2011 Elsevier Masson SAS. All rights reserved.

Global uniqueness and reconstruction for the multi-channel Gel'fand-Calderón inverse problem in two dimensions

Matteo Santacesaria
2011

Abstract

We study the multi-channel Gel'fand-Calderon inverse problem in two dimensions, i.e. the inverse boundary value problem for the equation -Delta psi + nu(x)psi = 0, x is an element of D, where nu is a smooth matrix-valued potential defined on a bounded planar domain D. We give an exact global reconstruction method for finding U from the associated Dirichlet-to-Neumann operator. This also yields a global uniqueness results: if two smooth matrix-valued potentials defined on a bounded planar domain have the same Dirichlet-to-Neumann operator then they coincide. (C) 2011 Elsevier Masson SAS. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11567/927656
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
social impact