The problem of estimating the state of discrete-time linear systems when uncertainties affect the system matrices is addressed. A quadratic cost function is considered, involving a finite number of recent measurements and a prediction vector. This leads to state the estimation problem in the form of a regularized least-squares one with uncertain data. The optimal solution (involving on-line scalar minimization) together with a suitable closed-form approximation are given. For both the resulting receding-horizon estimators convergence results are derived and an operating procedure to select the design parameters is proposed.

Robust receding-horizon estimation for uncertain discrete-time linear systems

Alessandri, A.;Baglietto, M.;Battistelli, G.
2003

Abstract

The problem of estimating the state of discrete-time linear systems when uncertainties affect the system matrices is addressed. A quadratic cost function is considered, involving a finite number of recent measurements and a prediction vector. This leads to state the estimation problem in the form of a regularized least-squares one with uncertain data. The optimal solution (involving on-line scalar minimization) together with a suitable closed-form approximation are given. For both the resulting receding-horizon estimators convergence results are derived and an operating procedure to select the design parameters is proposed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/905998
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 34
social impact