The problem of estimating the state of discrete-time linear systems when uncertainties affect the system matrices is addressed. A quadratic cost function is considered, involving a finite number of recent measurements and a prediction vector. This leads to state the estimation problem in the form of a regularized least-squares one with uncertain data. The optimal solution (involving on-line scalar minimization) together with a suitable closed-form approximation are given. For both the resulting receding-horizon estimators convergence results are derived and an operating procedure to select the design parameters is proposed.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Robust receding-horizon estimation for uncertain discrete-time linear systems |
Autori: | |
Data di pubblicazione: | 2003 |
Handle: | http://hdl.handle.net/11567/905998 |
ISBN: | 9783952417379 |
Appare nelle tipologie: | 04.01 - Contributo in atti di convegno |