This paper describes an investigation of the unsteady behaviour of turbocharger turbines by 1D modeling and experimental analysis. A one-dimensional model has been developed to predict the performance of a vaneless radial-inflow turbine submitted to unsteady flow conditions. Differently from other approaches proposed in the literature, the turbine has been simulated by separating the effects of casing and rotor on the unsteady flow and by modeling the multiple rotor entries from the volute. This is a simple and effective way to represent the turbine volute by a network of 1D pipes, in order to capture the mass storage effect due to the system volume, as well as the circumferential variation of fluid dynamic conditions along the volute, responsible for variable admittance of mass into the rotor through blade passages. The method developed is described and the accuracy of the 1D model is shown by comparing predicted results with measured data, achieved on a test rig dedicated to the investigation of automotive turbochargers. The validation of the code is presented and an analysis of the flow unsteadiness, based on a variety of parameters, is proposed.

A detailed one-dimensional model to predict the unsteady behavior of turbocharger turbines for internal combustion engine applications

Marelli, Silvia;Capobianco, Massimo
2019-01-01

Abstract

This paper describes an investigation of the unsteady behaviour of turbocharger turbines by 1D modeling and experimental analysis. A one-dimensional model has been developed to predict the performance of a vaneless radial-inflow turbine submitted to unsteady flow conditions. Differently from other approaches proposed in the literature, the turbine has been simulated by separating the effects of casing and rotor on the unsteady flow and by modeling the multiple rotor entries from the volute. This is a simple and effective way to represent the turbine volute by a network of 1D pipes, in order to capture the mass storage effect due to the system volume, as well as the circumferential variation of fluid dynamic conditions along the volute, responsible for variable admittance of mass into the rotor through blade passages. The method developed is described and the accuracy of the 1D model is shown by comparing predicted results with measured data, achieved on a test rig dedicated to the investigation of automotive turbochargers. The validation of the code is presented and an analysis of the flow unsteadiness, based on a variety of parameters, is proposed.
File in questo prodotto:
File Dimensione Formato  
1468087417752525.pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 6.19 MB
Formato Adobe PDF
6.19 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/892591
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 17
social impact