We show that minimizers of free discontinuity problems with energy dependent on jump integrals and Dirichlet boundary conditions are smooth provided a smallness condition is imposed on data. We examine in detail two examples: the elastic-plastic beam and the elastic-plastic plate with free yield lines. In both examples there is a gap between the condition for solvability (safe load condition) and this smallness condition (load regularity condition) which imply regularity and uniqueness of minimizers. Such gap allows the existence of damaged/creased minimizers. Eventually we produce explicit examples of irregular solutions when the load is in the gap.

Smooth and broken minimizers of some free discontinuity problems

Percivale, Danilo;
2017

Abstract

We show that minimizers of free discontinuity problems with energy dependent on jump integrals and Dirichlet boundary conditions are smooth provided a smallness condition is imposed on data. We examine in detail two examples: the elastic-plastic beam and the elastic-plastic plate with free yield lines. In both examples there is a gap between the condition for solvability (safe load condition) and this smallness condition (load regularity condition) which imply regularity and uniqueness of minimizers. Such gap allows the existence of damaged/creased minimizers. Eventually we produce explicit examples of irregular solutions when the load is in the gap.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11567/886987
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact