The aim of the present paper is to show how an approach based on human health risk analysis can be used as a decisional tool for the evaluation of impacts on population and for deciding between different waste treatment processes. The situation in which the increasing production of solid wastes cannot be confined in the old existing Municipal Solid Waste landfill (settled in Genoa, Liguria Region, Italy) is used as a case study. Risk assessment for human health due to air, surface water, groundwater and soil contamination is performed in different scenarios for the old landfill and compared with alternative Waste-to-Energy management solutions that consider thermal treatment by gasification of the total waste or gasification of the dry fraction coupled with anaerobic digestion of the wet fraction, plus biogas combustion with or without sludge and bottom ash/slag disposal in the old landfill. Hazard Index (HI) and Cancer Risk (CR) in case of operating landfill and under the suspected situation of failure of the sealing system, were respectively 1.15 and 1.1*10-7. Unacceptable HI were found due to groundwater contamination, while HI due to river pollution was slightly under the threshold. Vegetables ingestion was the most important pathway and ammonia the most responsible of toxic adverse effects. Fish ingestion and dermal contact with contaminated water were found to be the most important exposure pathways for carcinogenic risk, due mainly to BTEX. HI and CR in the supposed scenario of total waste gasification were respectively 9.4*10-1 and 1.1*10-5 while they were respectively 3.2*10-1 and 6*10-6 in case of gasification of the dry fraction. CR in both scenarios was over the threshold mainly due to dioxins, where milk and meat ingestion were found to be the highest risk pathways. Inhalation resulted as the highest not-carcinogenic risk exposure pathway, mainly due to NOx.Decision making was made by weighing up the different scenarios, and results suggested to definitively close the landfill and to eliminate gasification of the total waste as a possible waste treatment process.

Health risk assessment as an approach to manage an old landfill and to propose integrated solid waste treatment: A case study in Italy

PALADINO, OMBRETTA;
2017-01-01

Abstract

The aim of the present paper is to show how an approach based on human health risk analysis can be used as a decisional tool for the evaluation of impacts on population and for deciding between different waste treatment processes. The situation in which the increasing production of solid wastes cannot be confined in the old existing Municipal Solid Waste landfill (settled in Genoa, Liguria Region, Italy) is used as a case study. Risk assessment for human health due to air, surface water, groundwater and soil contamination is performed in different scenarios for the old landfill and compared with alternative Waste-to-Energy management solutions that consider thermal treatment by gasification of the total waste or gasification of the dry fraction coupled with anaerobic digestion of the wet fraction, plus biogas combustion with or without sludge and bottom ash/slag disposal in the old landfill. Hazard Index (HI) and Cancer Risk (CR) in case of operating landfill and under the suspected situation of failure of the sealing system, were respectively 1.15 and 1.1*10-7. Unacceptable HI were found due to groundwater contamination, while HI due to river pollution was slightly under the threshold. Vegetables ingestion was the most important pathway and ammonia the most responsible of toxic adverse effects. Fish ingestion and dermal contact with contaminated water were found to be the most important exposure pathways for carcinogenic risk, due mainly to BTEX. HI and CR in the supposed scenario of total waste gasification were respectively 9.4*10-1 and 1.1*10-5 while they were respectively 3.2*10-1 and 6*10-6 in case of gasification of the dry fraction. CR in both scenarios was over the threshold mainly due to dioxins, where milk and meat ingestion were found to be the highest risk pathways. Inhalation resulted as the highest not-carcinogenic risk exposure pathway, mainly due to NOx.Decision making was made by weighing up the different scenarios, and results suggested to definitively close the landfill and to eliminate gasification of the total waste as a possible waste treatment process.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/879600
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 27
social impact