Ab initio calculations were performed on ordered and disordered dolomite and dolomite-II crystal structures. The mechanism for the dolomite to dolomite-II phase transition was investigated by the calculation of vibrational frequencies. In particular, a soft mode was observed at the F point of the rhombohedral Brillouin zone, whose frequency becomes imaginary at pressure (P) higher than 16.70 GPa. Static geometry optimizations of dolomite-II in the P range 0–32 GPa allowed to study both the dolomite structural evolution with P and its compressibility. As pressure decreases, the dolomite-II distortion decreases as well, becoming almost regular at ∼17 GPa (phase transition) and increasing again after the phase transition, to values comparable to the low-pressure dolomite. The deformation style slightly changes in the dolomite-II like crystal structures before and after the phase transition. At low P (dolomite), K0 = 95.4(5) GPa and K0 = 4.26(8), whereas dolomite-II after the phase transition has K0 = 3.44(3), by fixing V0 and K0 at the value obtained for dolomite at the equilibrium. The influence of cation disorder on the baric behavior of dolomite was also investigated. No phase transition was predicted for disordered dolomite, at least up to 26 GPa. Thermodynamic calculations carried out on the two dolomite polymorphs allow the evaluation of temperature (T) effects on the phase transition in the range of validity of a fully ordered structural model. The dolomite to dolomite-II phase transition boundary is located at P = 16.75 GPa at T = 300 K, in agreement with considerations based on the static calculation and the analysis of the soft mode.

Ab initio study of the dolomite to dolomite-II high-pressure phase transition

BELMONTE, DONATO;
2017-01-01

Abstract

Ab initio calculations were performed on ordered and disordered dolomite and dolomite-II crystal structures. The mechanism for the dolomite to dolomite-II phase transition was investigated by the calculation of vibrational frequencies. In particular, a soft mode was observed at the F point of the rhombohedral Brillouin zone, whose frequency becomes imaginary at pressure (P) higher than 16.70 GPa. Static geometry optimizations of dolomite-II in the P range 0–32 GPa allowed to study both the dolomite structural evolution with P and its compressibility. As pressure decreases, the dolomite-II distortion decreases as well, becoming almost regular at ∼17 GPa (phase transition) and increasing again after the phase transition, to values comparable to the low-pressure dolomite. The deformation style slightly changes in the dolomite-II like crystal structures before and after the phase transition. At low P (dolomite), K0 = 95.4(5) GPa and K0 = 4.26(8), whereas dolomite-II after the phase transition has K0 = 3.44(3), by fixing V0 and K0 at the value obtained for dolomite at the equilibrium. The influence of cation disorder on the baric behavior of dolomite was also investigated. No phase transition was predicted for disordered dolomite, at least up to 26 GPa. Thermodynamic calculations carried out on the two dolomite polymorphs allow the evaluation of temperature (T) effects on the phase transition in the range of validity of a fully ordered structural model. The dolomite to dolomite-II phase transition boundary is located at P = 16.75 GPa at T = 300 K, in agreement with considerations based on the static calculation and the analysis of the soft mode.
File in questo prodotto:
File Dimensione Formato  
Zucchini_et_al_2017_EJM.pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 1.61 MB
Formato Adobe PDF
1.61 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/875544
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 18
social impact