The study aimed to evaluate the effect of different output powers of Er:YAG laser on microtensile bonding strength of indirect composite to resin cements.36 indirect composite blocks (GC Gradia DA2, Japan) size 15 × 10 × 10 mm3 were constructed, and divided into 12 groups, as follows:G1: control group (no treatment); Groups G2 to G6: treated with Er:YAG laser (2,940 nm) in noncontact mode, frequency 20 Hz, pulse duration 470 μs, with output power ranging from 2W to 6W; Groups G7 sandblasting, Groups 8 to G12: as Groups G2 to G 6 with preparatory sandblasting. One specimen from each group was analyzed by SEM; each specimen was fixed to a specialized metal jig using cyanoacrylate (Mitreapel, Beta Kimya San. Ve TIC, Iran) and debonded under tension with a universal testing machine (Zwick, Germany) at a crosshead speed of 0.5 mm min-1. Sandblasting and laser can improve bond strength above an energy level of 150 mJ. SEM evaluation of laser-treated specimens showed irregularities and deep undercuts. T test analysis showed no significant difference between sandblasted and non-sandblasted group, with laser output power of 0, 100, or 150 mJ (P=0.666, P=0.875, and P=0.069); in the specimens irradiated with energy output of 200, 250, or 300 mJ, sandblasted specimens showed higher bond strength than non-sandblasted ones. The results demonstrate that, in composite resin irradiated with laser at energy output of 200-300 mJ, sandblasting might be a suitable procedure to enhance bond strength of resin cement.

Microtensile strength of resin cement bond to indirect composite treated by different output powers of Er: YAG laser

BENEDICENTI, STEFANO;ANGIERO, FRANCESCA;
2016-01-01

Abstract

The study aimed to evaluate the effect of different output powers of Er:YAG laser on microtensile bonding strength of indirect composite to resin cements.36 indirect composite blocks (GC Gradia DA2, Japan) size 15 × 10 × 10 mm3 were constructed, and divided into 12 groups, as follows:G1: control group (no treatment); Groups G2 to G6: treated with Er:YAG laser (2,940 nm) in noncontact mode, frequency 20 Hz, pulse duration 470 μs, with output power ranging from 2W to 6W; Groups G7 sandblasting, Groups 8 to G12: as Groups G2 to G 6 with preparatory sandblasting. One specimen from each group was analyzed by SEM; each specimen was fixed to a specialized metal jig using cyanoacrylate (Mitreapel, Beta Kimya San. Ve TIC, Iran) and debonded under tension with a universal testing machine (Zwick, Germany) at a crosshead speed of 0.5 mm min-1. Sandblasting and laser can improve bond strength above an energy level of 150 mJ. SEM evaluation of laser-treated specimens showed irregularities and deep undercuts. T test analysis showed no significant difference between sandblasted and non-sandblasted group, with laser output power of 0, 100, or 150 mJ (P=0.666, P=0.875, and P=0.069); in the specimens irradiated with energy output of 200, 250, or 300 mJ, sandblasted specimens showed higher bond strength than non-sandblasted ones. The results demonstrate that, in composite resin irradiated with laser at energy output of 200-300 mJ, sandblasting might be a suitable procedure to enhance bond strength of resin cement.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/855202
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact