This paper investigates the flow, heat transfer and film cooling effectiveness of advanced high-pressure turbine blade tips and endwall. Two blade tip configurations have been studied, including a full rim squealer and a partial squealer with a leading edge and trailing edge cut-out. Both blade tip configurations have pressure side film cooling, and cooling air extraction through dust holes which are positioned along the airfoil camber line on the tip cavity floor. The investigated clearance gap and the blade tip geometry are typical of that commonly found in the high pressure turbine blades of heavyduty gas turbines. Numerical studies and experimental investigations in a linear cascade have been conducted at a blade exit isentropic Mach number of 0.8 and a Reynolds number of 9 × 105. The influence of the coolant flow ejected from the tip dust holes and the tip pressure side film holes has also been investigated. Both the numerical and experimental results showed that there is a complex aero-thermal interaction within the tip cavity and along the endwall. This was evident for both tip configurations. Although, the global heat transfer and film cooling characteristics of both blade tip configurations were similar, there were distinct local differences. The partial squealer exhibited higher local film cooling effectiveness at the trailing edge but also low values at the leading edge. For both tip configurations, the highest heat transfer coefficients were located on the suction side rim within the mid-chord region. However on the endwall, the highest heat transfer rates were located close to the pressure side rim and along most of the blade chord. Additionally, the numerical results also showed that the coolant ejected from the blade tip dust holes partially impinges onto the endwall. Copyright © 2010 by Alstom Technology, Ltd.

Heat transfer and film cooling of blade tips and endwalls

LENGANI, DAVIDE
2010-01-01

Abstract

This paper investigates the flow, heat transfer and film cooling effectiveness of advanced high-pressure turbine blade tips and endwall. Two blade tip configurations have been studied, including a full rim squealer and a partial squealer with a leading edge and trailing edge cut-out. Both blade tip configurations have pressure side film cooling, and cooling air extraction through dust holes which are positioned along the airfoil camber line on the tip cavity floor. The investigated clearance gap and the blade tip geometry are typical of that commonly found in the high pressure turbine blades of heavyduty gas turbines. Numerical studies and experimental investigations in a linear cascade have been conducted at a blade exit isentropic Mach number of 0.8 and a Reynolds number of 9 × 105. The influence of the coolant flow ejected from the tip dust holes and the tip pressure side film holes has also been investigated. Both the numerical and experimental results showed that there is a complex aero-thermal interaction within the tip cavity and along the endwall. This was evident for both tip configurations. Although, the global heat transfer and film cooling characteristics of both blade tip configurations were similar, there were distinct local differences. The partial squealer exhibited higher local film cooling effectiveness at the trailing edge but also low values at the leading edge. For both tip configurations, the highest heat transfer coefficients were located on the suction side rim within the mid-chord region. However on the endwall, the highest heat transfer rates were located close to the pressure side rim and along most of the blade chord. Additionally, the numerical results also showed that the coolant ejected from the blade tip dust holes partially impinges onto the endwall. Copyright © 2010 by Alstom Technology, Ltd.
2010
9780791843994
9780791843994
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/849694
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 1
social impact