In this paper we construct new Beauville surfaces with group either PSL(2, p e), or belonging to some other families of finite simple groups of Lie type of low Lie rank, or an alternating group, or a symmetric group, proving a conjecture of Bauer, Catanese and Grunewald. The proofs rely on probabilistic group theoretical results of Liebeck and Shalev, on classical results of Macbeath and on recent results of Marion. © 2013 Springer-Verlag Berlin Heidelberg.
New Beauville surfaces and finite simple groups
PENEGINI, MATTEO
2013-01-01
Abstract
In this paper we construct new Beauville surfaces with group either PSL(2, p e), or belonging to some other families of finite simple groups of Lie type of low Lie rank, or an alternating group, or a symmetric group, proving a conjecture of Bauer, Catanese and Grunewald. The proofs rely on probabilistic group theoretical results of Liebeck and Shalev, on classical results of Macbeath and on recent results of Marion. © 2013 Springer-Verlag Berlin Heidelberg.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
0910.5402v4.pdf
accesso aperto
Descrizione: 18 pages. Final version, to appear in Manuscripta Math - pre print arXiv:0910.5402 [math.GR]
Tipologia:
Documento in Pre-print
Dimensione
223.29 kB
Formato
Adobe PDF
|
223.29 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.