In this paper we construct new Beauville surfaces with group either PSL(2, p e), or belonging to some other families of finite simple groups of Lie type of low Lie rank, or an alternating group, or a symmetric group, proving a conjecture of Bauer, Catanese and Grunewald. The proofs rely on probabilistic group theoretical results of Liebeck and Shalev, on classical results of Macbeath and on recent results of Marion. © 2013 Springer-Verlag Berlin Heidelberg.

New Beauville surfaces and finite simple groups

PENEGINI, MATTEO
2013-01-01

Abstract

In this paper we construct new Beauville surfaces with group either PSL(2, p e), or belonging to some other families of finite simple groups of Lie type of low Lie rank, or an alternating group, or a symmetric group, proving a conjecture of Bauer, Catanese and Grunewald. The proofs rely on probabilistic group theoretical results of Liebeck and Shalev, on classical results of Macbeath and on recent results of Marion. © 2013 Springer-Verlag Berlin Heidelberg.
File in questo prodotto:
File Dimensione Formato  
0910.5402v4.pdf

accesso aperto

Descrizione: 18 pages. Final version, to appear in Manuscripta Math - pre print arXiv:0910.5402 [math.GR]
Tipologia: Documento in Pre-print
Dimensione 223.29 kB
Formato Adobe PDF
223.29 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/846707
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 9
social impact