PURPOSE: The aim of this study was to analyze through a three-dimensional finite element analysis (3D-FEA) stress distribution on four implants supporting a full-arch implant-supported fixed prosthesis (FFP) using different prosthesis designs. MATERIALS AND METHODS: A 3D edentulous maxillary model was created and four implants were virtually placed into the maxilla and splinted, simulating an FFP without framework, with a cast metal framework, and with a carbon fiber framework. An occlusal load of 150 N was applied, stresses were transmitted into peri-implant bone, and prosthodontic components were recorded. RESULTS: 3D-FEA revealed higher stresses on the implants (up to +55.16%), on peri-implant bone (up to +56.93%), and in the prosthesis (up to +70.71%) when the full-acrylic prosthesis was simulated. The prosthesis with a carbon fiber framework showed an intermediate behavior between that of the other two configurations. CONCLUSION: This study suggests that the presence of a rigid framework in full-arch fixed prostheses provides a better load distribution that decreases the maximum values of stress at the levels of implants, prosthesis, and maxillary bone.

Effect of Framework in an Implant-Supported Full-Arch Fixed Prosthesis: 3D Finite Element Analysis

MENINI, MARIA;PESCE, PAOLO;BEVILACQUA, MARCO;PERA, FRANCESCO;TEALDO, TIZIANO;BARBERIS, FABRIZIO;PERA, PAOLO
2015-01-01

Abstract

PURPOSE: The aim of this study was to analyze through a three-dimensional finite element analysis (3D-FEA) stress distribution on four implants supporting a full-arch implant-supported fixed prosthesis (FFP) using different prosthesis designs. MATERIALS AND METHODS: A 3D edentulous maxillary model was created and four implants were virtually placed into the maxilla and splinted, simulating an FFP without framework, with a cast metal framework, and with a carbon fiber framework. An occlusal load of 150 N was applied, stresses were transmitted into peri-implant bone, and prosthodontic components were recorded. RESULTS: 3D-FEA revealed higher stresses on the implants (up to +55.16%), on peri-implant bone (up to +56.93%), and in the prosthesis (up to +70.71%) when the full-acrylic prosthesis was simulated. The prosthesis with a carbon fiber framework showed an intermediate behavior between that of the other two configurations. CONCLUSION: This study suggests that the presence of a rigid framework in full-arch fixed prostheses provides a better load distribution that decreases the maximum values of stress at the levels of implants, prosthesis, and maxillary bone.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/843177
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 35
social impact