Overcoming the typical ossification of the traditional TCP/IP-based Internet infrastructure will allow opening the way for more flexible and energy efficient paradigms, able to provide a sustainable support to the constantly increasing number of devices and services. To this goal, the INPUT Project will overcome current limitations by introducing computing and storage capabilities to edge network devices in order to allow users/telecom operators to create/manage private clouds “in the network”. In addition, these new capabilities will allow replacing smart devices, such as network-attached storage servers, set-topboxes, video sensors etc. with their virtual images. Although this virtualization process can clearly bring to a reduction of the emissions, along with the lowering of capital (CAPEX) and operational (OPEX) expenditures, on the other hand it requires more computational capacity at server level, which may erase the savings produced by virtualization in the absence of a thorough management and planning. In this respect, this paper presents a mathematical model that analyzes the impact of different levels of virtualization on the overall energy efficiency by thoroughly outlining how the carbon footprint varies depending on the virtualization level of a device.

The expected impact of smart devices virtualization

BOLLA, RAFFAELE;Bruschi, Roberto;DAVOLI, FRANCO;LOMBARDO, CHIARA;MASULLO, LAURA
2016-01-01

Abstract

Overcoming the typical ossification of the traditional TCP/IP-based Internet infrastructure will allow opening the way for more flexible and energy efficient paradigms, able to provide a sustainable support to the constantly increasing number of devices and services. To this goal, the INPUT Project will overcome current limitations by introducing computing and storage capabilities to edge network devices in order to allow users/telecom operators to create/manage private clouds “in the network”. In addition, these new capabilities will allow replacing smart devices, such as network-attached storage servers, set-topboxes, video sensors etc. with their virtual images. Although this virtualization process can clearly bring to a reduction of the emissions, along with the lowering of capital (CAPEX) and operational (OPEX) expenditures, on the other hand it requires more computational capacity at server level, which may erase the savings produced by virtualization in the absence of a thorough management and planning. In this respect, this paper presents a mathematical model that analyzes the impact of different levels of virtualization on the overall energy efficiency by thoroughly outlining how the carbon footprint varies depending on the virtualization level of a device.
2016
978-1-4673-8579-4
978-1-4673-8578-7
File in questo prodotto:
File Dimensione Formato  
07440551.pdf

accesso chiuso

Descrizione: Articolo principale
Tipologia: Documento in versione editoriale
Dimensione 148.32 kB
Formato Adobe PDF
148.32 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/842309
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact