The subject of this paper concerns the development of a vehicular hydrogen tank system, using a commercial interstitial metal hydride as storage material. The design of the tank was intended to feed a fuel cell in a light prototype vehicle, and the chosen hydride material, Hydralloy C5 by GfE, was expected to be able to absorb and desorb hydrogen in a range of pressure suitable for this purpose. A systematic analysis of the material in laboratory scale allows an extrapolation of the thermodynamic and reaction kinetics data. The following development of the modular tank was done according to the requirements of the prototype vehicle propulsion system and led to promising intermediate results. The modular approach granted flexibility in the design, allowing both to reach carefully the design goals and to learn the limiting factors in the sorption process. Proper heat management and suitable equipment remain key factors in order to achieve the best performances.

Development of a modular room-temperature hydride storage system for vehicular applications

SACCONE, ADRIANA;DE NEGRI, SERENA;
2016-01-01

Abstract

The subject of this paper concerns the development of a vehicular hydrogen tank system, using a commercial interstitial metal hydride as storage material. The design of the tank was intended to feed a fuel cell in a light prototype vehicle, and the chosen hydride material, Hydralloy C5 by GfE, was expected to be able to absorb and desorb hydrogen in a range of pressure suitable for this purpose. A systematic analysis of the material in laboratory scale allows an extrapolation of the thermodynamic and reaction kinetics data. The following development of the modular tank was done according to the requirements of the prototype vehicle propulsion system and led to promising intermediate results. The modular approach granted flexibility in the design, allowing both to reach carefully the design goals and to learn the limiting factors in the sorption process. Proper heat management and suitable equipment remain key factors in order to achieve the best performances.
File in questo prodotto:
File Dimensione Formato  
Capurso_et_al_Appl_PhysA_2016.pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 4.74 MB
Formato Adobe PDF
4.74 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/841132
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 31
social impact