The recent development of Intelligent Transportation Systems offers the possibility of cooperative planning of multi-actor systems in a distributed framework, by enabling prompt exchange of information among actors. This paper proposes a modeling framework for cooperation in intermodal freight transport chains as multi-actor systems. In this framework, the problem of optimizing freight transportation is decomposed into a suitable set of sub-problems, each representing the operations of an actor which are connected using a negotiation scheme. A Discrete Event model is developed which optimizes the system on a rolling horizon basis to account for the dynamics of intermodal freight transport operations. This framework allows for an event driven short/medium term planning of intermodal freight transport chains. The proposed methodology is evaluated using a realistic case study, and the results are compared against the First-Come-First-Served strategy, highlighting the significance of cooperation in systems operating close to capacity.

An agent-based framework for cooperative planning of intermodal freight transport chains

DI FEBBRARO, ANGELA;SACCO, NICOLA;SAEEDNIA, MAHNAM
2016-01-01

Abstract

The recent development of Intelligent Transportation Systems offers the possibility of cooperative planning of multi-actor systems in a distributed framework, by enabling prompt exchange of information among actors. This paper proposes a modeling framework for cooperation in intermodal freight transport chains as multi-actor systems. In this framework, the problem of optimizing freight transportation is decomposed into a suitable set of sub-problems, each representing the operations of an actor which are connected using a negotiation scheme. A Discrete Event model is developed which optimizes the system on a rolling horizon basis to account for the dynamics of intermodal freight transport operations. This framework allows for an event driven short/medium term planning of intermodal freight transport chains. The proposed methodology is evaluated using a realistic case study, and the results are compared against the First-Come-First-Served strategy, highlighting the significance of cooperation in systems operating close to capacity.
File in questo prodotto:
File Dimensione Formato  
TRC2016.pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 968.87 kB
Formato Adobe PDF
968.87 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/830091
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 37
social impact