Exosomes are nanovesicles, derived from the endocytic pathway, released by most cell types and found in many body fluids, including urine. A variety of exosomal functions have been reported, including transfer of RNA, cell communication, control of apoptosis and protein lifespan. Exosomes from mesenchymal stem cells can rescue bioenergetics of injured cells. Here the urinary exosome proteome, non-urinary exosome proteome and urinome are compared. A consistent number of identified proteins cluster to metabolic functions. Cytoscape software analysis based on biological processes gene ontology database shows that metabolic pathways such as aerobic glycolysis and oxidative phosphorylation have a high probability (p ≤ 0.05) of being expressed and therefore functional. A metabolic function appears to be associated with human urinary exosomes, whose relevance experimental studies can assess.
The human urinary exosome as a potential metabolic effector cargo
Bruschi, Maurizio;RAVERA, SILVIA;BARTOLUCCI, MARTINA;CALZIA, DANIELA;Lavarello, Chiara;PANFOLI, ISABELLA
2015-01-01
Abstract
Exosomes are nanovesicles, derived from the endocytic pathway, released by most cell types and found in many body fluids, including urine. A variety of exosomal functions have been reported, including transfer of RNA, cell communication, control of apoptosis and protein lifespan. Exosomes from mesenchymal stem cells can rescue bioenergetics of injured cells. Here the urinary exosome proteome, non-urinary exosome proteome and urinome are compared. A consistent number of identified proteins cluster to metabolic functions. Cytoscape software analysis based on biological processes gene ontology database shows that metabolic pathways such as aerobic glycolysis and oxidative phosphorylation have a high probability (p ≤ 0.05) of being expressed and therefore functional. A metabolic function appears to be associated with human urinary exosomes, whose relevance experimental studies can assess.File | Dimensione | Formato | |
---|---|---|---|
ERP_2015.pdf
accesso chiuso
Tipologia:
Documento in versione editoriale
Dimensione
557.64 kB
Formato
Adobe PDF
|
557.64 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.