Tower buildings can be very sensitive to dynamic actions and their dynamic analysis is usually carried out numerically through sophisticated finite element models. In this paper, an equivalent nonlinear one-dimensional shear–shear–torsional beam model immersed in a three-dimensional space is introduced to reproduce, in an approximate way, the dynamic behavior of tower buildings. It represents an extension of a linear beam model recently introduced by the authors, accounting for nonlinearities generated by the stretching of the columns. The constitutive law of the beam is identified from a discrete model of a 3D-frame, via a homogenization process, which accounts for the rotation of the floors around the tower axis. The macroscopic shear strain in the equivalent beam is produced by the bending of columns, accompanied by negligible rotation of the floors. A coupled nonlinear shear–torsional mechanical model is thus obtained. The coupling between shear and torsion is related to a non-symmetric layout of the columns, while mechanical nonlinearities are proportional to the slenderness of the columns. The model can be used for the analysis of the response of tower buildings to any kind of dynamic and static excitation. A first application is here presented to investigate the effect of mechanical and aerodynamic coupling on the critical galloping conditions and on the postcritical behavior of tower buildings, based on a quasi-steady model of aerodynamic forces.

Equivalent nonlinear beam model for the 3-D analysis of shear-type buildings: Application to aeroelastic instability

PICCARDO, GIUSEPPE;TUBINO, FEDERICA;
2016-01-01

Abstract

Tower buildings can be very sensitive to dynamic actions and their dynamic analysis is usually carried out numerically through sophisticated finite element models. In this paper, an equivalent nonlinear one-dimensional shear–shear–torsional beam model immersed in a three-dimensional space is introduced to reproduce, in an approximate way, the dynamic behavior of tower buildings. It represents an extension of a linear beam model recently introduced by the authors, accounting for nonlinearities generated by the stretching of the columns. The constitutive law of the beam is identified from a discrete model of a 3D-frame, via a homogenization process, which accounts for the rotation of the floors around the tower axis. The macroscopic shear strain in the equivalent beam is produced by the bending of columns, accompanied by negligible rotation of the floors. A coupled nonlinear shear–torsional mechanical model is thus obtained. The coupling between shear and torsion is related to a non-symmetric layout of the columns, while mechanical nonlinearities are proportional to the slenderness of the columns. The model can be used for the analysis of the response of tower buildings to any kind of dynamic and static excitation. A first application is here presented to investigate the effect of mechanical and aerodynamic coupling on the critical galloping conditions and on the postcritical behavior of tower buildings, based on a quasi-steady model of aerodynamic forces.
File in questo prodotto:
File Dimensione Formato  
Piccardo Tubino Luongo 2016 Equivalent nonlinear beam model for the 3-D analysis of shear-type buildings application to aeroelastic instability.pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 1.47 MB
Formato Adobe PDF
1.47 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Piccardo_Tubino_Luongo_2016_IJNM_postprint.pdf

accesso aperto

Tipologia: Documento in Post-print
Dimensione 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/817511
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 35
social impact