In the last dozen years, a wide and variegated mass of observational data revealed that the universe is now expanding at an accelerated rate. In the absence of a well-based theory to interpret the observations, cosmography provides information about the evolution of the universe from measured distances, only assuming that the geometry can be described by the Friedmann–Lemaitre–Robertson–Walker metric. In this paper, we perform a high-redshift analysis which allows us to put constraints on the cosmographic parameters up to the fifth-order, thus inducing indirect constraints on any gravity theory.

Updated f(T) gravity constraints from high-redshift cosmography

CIANCI, ROBERTO;
2015-01-01

Abstract

In the last dozen years, a wide and variegated mass of observational data revealed that the universe is now expanding at an accelerated rate. In the absence of a well-based theory to interpret the observations, cosmography provides information about the evolution of the universe from measured distances, only assuming that the geometry can be described by the Friedmann–Lemaitre–Robertson–Walker metric. In this paper, we perform a high-redshift analysis which allows us to put constraints on the cosmographic parameters up to the fifth-order, thus inducing indirect constraints on any gravity theory.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/817214
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact