Artificial Muscles based on Dielectric Elastomers (DE) can potentially enable the realization of bio-inspired actuation systems whose intrinsic compliance and damping can be varied according to the task requirements. Nonetheless, the control of DE-based Variable Impedance Actuators (VIA) is not trivial owing to the non-linear viscoelastic response which characterizes the acrylic dielectrics commonly employed in practical devices. In this context, the purpose of the present paper is to outline a novel strategy for the control of DE-based VIA. Although the proposed methodology is applicable to generic DE morphologies, the considered system is composed of a couple of conicallyshaped DE films in agonistic-antagonistic configuration. Following previously published results, the system dynamic model is firstly recalled. Then, a DE viscoelasticity compensation technique is outlined together with a control law able to shape the DE actuator impedance as desired. The operative limits of the system are explicitly considered and managed in the controller by increasing the operating DE actuator stiffness if required. In addition, the problem of model uncertainties compensation is also addressed. Finally, as a preliminary step towards the realization of a practical DE-based VIA, the proposed control approach is validated by means of simulations.

ON THE CONTROL OF A DIELECTRIC ELASTOMER ARTIFICIAL MUSCLE WITH VARIABLE IMPEDANCE

BERSELLI, GIOVANNI
2013-01-01

Abstract

Artificial Muscles based on Dielectric Elastomers (DE) can potentially enable the realization of bio-inspired actuation systems whose intrinsic compliance and damping can be varied according to the task requirements. Nonetheless, the control of DE-based Variable Impedance Actuators (VIA) is not trivial owing to the non-linear viscoelastic response which characterizes the acrylic dielectrics commonly employed in practical devices. In this context, the purpose of the present paper is to outline a novel strategy for the control of DE-based VIA. Although the proposed methodology is applicable to generic DE morphologies, the considered system is composed of a couple of conicallyshaped DE films in agonistic-antagonistic configuration. Following previously published results, the system dynamic model is firstly recalled. Then, a DE viscoelasticity compensation technique is outlined together with a control law able to shape the DE actuator impedance as desired. The operative limits of the system are explicitly considered and managed in the controller by increasing the operating DE actuator stiffness if required. In addition, the problem of model uncertainties compensation is also addressed. Finally, as a preliminary step towards the realization of a practical DE-based VIA, the proposed control approach is validated by means of simulations.
2013
978-079185603-1
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/810971
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 3
social impact