A fully mechanical infinitely variable transmission (IVT) based on the use of an oscillating inertia is described. The system includes a four-bar linkage mechanism, an epicyclic gear train and a pair of one-way clutches. The proposed IVT can be used in place of both gear-box and clutch in self-propelled vehicles. A basic model is used for a first attempt sizing of the transmission kinematic parameters. A more accurate model, achieved using Bond Graphs, is used to investigate the dynamic effect of inertias, one-way clutch compliance, and minor design changes in the kinematic parameters. Finally, simulations compare the behavior of a car fitted with a manual gear-box and the same car fitted with the proposed IVT.

Kinematic design and bond graph modeling of an inertia-type infinitely variable transmission

BERSELLI, GIOVANNI;
2008-01-01

Abstract

A fully mechanical infinitely variable transmission (IVT) based on the use of an oscillating inertia is described. The system includes a four-bar linkage mechanism, an epicyclic gear train and a pair of one-way clutches. The proposed IVT can be used in place of both gear-box and clutch in self-propelled vehicles. A basic model is used for a first attempt sizing of the transmission kinematic parameters. A more accurate model, achieved using Bond Graphs, is used to investigate the dynamic effect of inertias, one-way clutch compliance, and minor design changes in the kinematic parameters. Finally, simulations compare the behavior of a car fitted with a manual gear-box and the same car fitted with the proposed IVT.
2008
9780791843291
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/810122
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact