he seismic Performance-Based Assessment (PBA) of monumental buildings requires to consider safety and conservation objectives, including also the possible presence of artistic assets. In order to face these issues, the case study of the Great Mosque of Algiers is analysed in this paper: in fact, besides to be one of the remaining Almoradiv architecture and the oldest mosque of the city, it is also characterized by the presence of a mihrâb, a decorated arched niche that represents an interesting artistic asset to be included in the PBA. Within this context, particular attention has been paid to the choice of the most reliable modelling strategy for the application of the displacement approach in the PBA procedure, as a function of different possible seismic behaviours. In the case of Great Mosque both the current state of the building and a virtual strengthened condition are analysed. It is worth noting that, while in the current state the seismic behaviour of the asset is well described by a set of macroelements that may be analysed independently (through 2D models), in the second case the strengthening intervention leads to the adoption of a 3D global model (indeed, the roof bracing promotes a “box-type” behaviour). In the paper, the integrate use of three different modelling strategies of different complexity is discussed: the finite element model, the equivalent frame approach and the macro-block model. The results of nonlinear analyses performed (static and kinematic) constitute the main tool to interpret the seismic response of the asset, perform the PBA and address the choice on the rehabilitation decisions. These latter in this case are mainly affected by the occurrence of too high deformations in local portions of the building, including that in which the artistic asset is located.

Performance-based assessment of the Great Mosque of Algiers

ROSSI, MICHELA;CATTARI, SERENA;LAGOMARSINO, SERGIO
2015-01-01

Abstract

he seismic Performance-Based Assessment (PBA) of monumental buildings requires to consider safety and conservation objectives, including also the possible presence of artistic assets. In order to face these issues, the case study of the Great Mosque of Algiers is analysed in this paper: in fact, besides to be one of the remaining Almoradiv architecture and the oldest mosque of the city, it is also characterized by the presence of a mihrâb, a decorated arched niche that represents an interesting artistic asset to be included in the PBA. Within this context, particular attention has been paid to the choice of the most reliable modelling strategy for the application of the displacement approach in the PBA procedure, as a function of different possible seismic behaviours. In the case of Great Mosque both the current state of the building and a virtual strengthened condition are analysed. It is worth noting that, while in the current state the seismic behaviour of the asset is well described by a set of macroelements that may be analysed independently (through 2D models), in the second case the strengthening intervention leads to the adoption of a 3D global model (indeed, the roof bracing promotes a “box-type” behaviour). In the paper, the integrate use of three different modelling strategies of different complexity is discussed: the finite element model, the equivalent frame approach and the macro-block model. The results of nonlinear analyses performed (static and kinematic) constitute the main tool to interpret the seismic response of the asset, perform the PBA and address the choice on the rehabilitation decisions. These latter in this case are mainly affected by the occurrence of too high deformations in local portions of the building, including that in which the artistic asset is located.
File in questo prodotto:
File Dimensione Formato  
BEE_2015_rossi_greatmosque.pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 3.05 MB
Formato Adobe PDF
3.05 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/809619
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 25
social impact