One serious issue in Environmental Science and Engineering concerns the prediction of the fate of contaminants released in a water body. A possible way to tackle this problem consists in forecasting pollutant trajectories from velocity-field data sets obtained by measurements or numerical simulations. A shortcoming of such a traditional approach is the high sensitivity to initial conditions. Another way to understand transport in complex fluid flows comes from a new mathematical tool: Lagrangian Coherent Structures (LCS). The idea of using Lagrangian Structures rose as a meeting point between non-linear dynamics and fluid mechanics. It provides the means to identify material lines that shape trajectory patterns, dividing the flow field into regions with different dynamical behaviours. The objective of this study is the detection of Lagrangian Coherent Structures in the Gulf of Trieste. LCS are calculated from the 2D surface velocity field measured by the coastal radars of the TOSCA (Tracking Oil Spills & Coastal Awareness network) project. Blobs of simulated particles are subjected to chaotic stirring (transport and stretching) that is in agreement with the detected LCS. In the TOSCA project drifters were deployed, too. Therefore, a simple simulation of some of these drifters was carried out. The trajectory of the simulated drifters diverge from the real one: this result is due to the chaotic transport of passive tracers. However, the separation becomes more evident when velocity fields are less accurate because of lack of measurements, previously filled with nearest neighbourhood interpolation. In the light of such results, the use of LCS could be helpful in understanding the trajectory followed by drifters and passive tracers in general, because they can point out the directions along which transport is likely to develop.

Lagrangian Coherent Structures in the Trieste gulf.

BESIO, GIOVANNI;ENRILE, FRANCESCO;MAGALDI, MARCELLO GATIMU;
2013

Abstract

One serious issue in Environmental Science and Engineering concerns the prediction of the fate of contaminants released in a water body. A possible way to tackle this problem consists in forecasting pollutant trajectories from velocity-field data sets obtained by measurements or numerical simulations. A shortcoming of such a traditional approach is the high sensitivity to initial conditions. Another way to understand transport in complex fluid flows comes from a new mathematical tool: Lagrangian Coherent Structures (LCS). The idea of using Lagrangian Structures rose as a meeting point between non-linear dynamics and fluid mechanics. It provides the means to identify material lines that shape trajectory patterns, dividing the flow field into regions with different dynamical behaviours. The objective of this study is the detection of Lagrangian Coherent Structures in the Gulf of Trieste. LCS are calculated from the 2D surface velocity field measured by the coastal radars of the TOSCA (Tracking Oil Spills & Coastal Awareness network) project. Blobs of simulated particles are subjected to chaotic stirring (transport and stretching) that is in agreement with the detected LCS. In the TOSCA project drifters were deployed, too. Therefore, a simple simulation of some of these drifters was carried out. The trajectory of the simulated drifters diverge from the real one: this result is due to the chaotic transport of passive tracers. However, the separation becomes more evident when velocity fields are less accurate because of lack of measurements, previously filled with nearest neighbourhood interpolation. In the light of such results, the use of LCS could be helpful in understanding the trajectory followed by drifters and passive tracers in general, because they can point out the directions along which transport is likely to develop.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11567/766397
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact