Background: The 17O(p,γ )18F reaction affects the production of key isotopes (e.g., 18F and 18O) in the explosive hydrogen burning that powers classical novae. Under these explosive conditions, the reaction rate is dominated by contributions from a narrow resonance at Ec.m. = 183 keV and by the combined contributions of direct capture and low-energy tails of broad resonances. At present, the astrophysical reaction rate is not well constrained because of the lack of data in the energy region appropriate to classical novae. Purpose: This study aims at the measurement of the 17O(p,γ )18F reaction cross section in order to determine its reaction rate in the temperature region appropriate to explosive hydrogen burning in novae. Method: The 17O(p,γ )18F reaction cross section was measured using both the prompt detection of the emitted γ rays and an activation technique. Measurements were carried out at the Laboratory for Underground Nuclear Astrophysics (Gran Sasso, Italy)where the strongly reduced cosmic-ray-induced background allows for improved sensitivity compared to previous studies. Results: The 17O(p,γ )18F reaction cross section was measured in the range Ec.m. = 160 to 370 keV. The strength of the Ec.m. = 183 keV resonance, ωγ = 1.67 ± 0.12μeV, was determined with unprecedented precision. The total S factor was obtained through a combined fit of prompt γ -ray and activation results. An overall global fit including other existing data sets was also carried out and a recommended astrophysical reaction rate is presented. Conclusions: The reaction rate uncertainty attained in this work is now below the required precision for nova models. We verified, following a full set of hydrodynamic nova models, that the abundances of oxygen and fluorine isotopes obtained with the present reaction rate are determined with 10% precision and put firmer constraints on observational signatures of novae events.

Underground study of the 17O( p,γ )18F reaction relevant for explosive hydrogen burning

CORVISIERO, PIETRO;PRATI, PAOLO;
2014-01-01

Abstract

Background: The 17O(p,γ )18F reaction affects the production of key isotopes (e.g., 18F and 18O) in the explosive hydrogen burning that powers classical novae. Under these explosive conditions, the reaction rate is dominated by contributions from a narrow resonance at Ec.m. = 183 keV and by the combined contributions of direct capture and low-energy tails of broad resonances. At present, the astrophysical reaction rate is not well constrained because of the lack of data in the energy region appropriate to classical novae. Purpose: This study aims at the measurement of the 17O(p,γ )18F reaction cross section in order to determine its reaction rate in the temperature region appropriate to explosive hydrogen burning in novae. Method: The 17O(p,γ )18F reaction cross section was measured using both the prompt detection of the emitted γ rays and an activation technique. Measurements were carried out at the Laboratory for Underground Nuclear Astrophysics (Gran Sasso, Italy)where the strongly reduced cosmic-ray-induced background allows for improved sensitivity compared to previous studies. Results: The 17O(p,γ )18F reaction cross section was measured in the range Ec.m. = 160 to 370 keV. The strength of the Ec.m. = 183 keV resonance, ωγ = 1.67 ± 0.12μeV, was determined with unprecedented precision. The total S factor was obtained through a combined fit of prompt γ -ray and activation results. An overall global fit including other existing data sets was also carried out and a recommended astrophysical reaction rate is presented. Conclusions: The reaction rate uncertainty attained in this work is now below the required precision for nova models. We verified, following a full set of hydrodynamic nova models, that the abundances of oxygen and fluorine isotopes obtained with the present reaction rate are determined with 10% precision and put firmer constraints on observational signatures of novae events.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/673567
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 54
  • ???jsp.display-item.citation.isi??? 47
social impact