Chemoprevention is effective in inhibiting the onset of cancer in experimental animal models, but the transferability of similar results to humans is questionable. Therefore, reliable intermediate molecular biomarkers are needed to evaluate the efficacy of chemopreventive agents before the onset of cancer. The use of genomic biomarkers is limited by their poor predictive value. Although post-genomic biomarkers (i.e., gene-expression analyses) are useful for evaluating the safety, efficacy, and mechanistic basis of chemopreventive agents, the biomarkers are often poorly related to the phenotype, due to posttranscriptional regulation. Proteome analyses can evaluate preclinical phenotype alterations, but only at low protein counts. MicroRNA alterations, which are essential for the development of cancer, may be modulated by chemopreventive agents. Furthermore, microRNA delivery may be used to counteract carcinogenesis. Exposure to cigarette smoke induces microRNA let-7 downregulation and cell proliferation that can be converted to cell growth arrest and apoptosis upon let-7a transfection. Therefore, microRNAs are reliable biomarkers for evaluating chemoprevention efficacy and may be used to counteract carcinogenesis.

Molecular medicine and the development of cancer chemopreventive agents.

IZZOTTI, ALBERTO
2012-01-01

Abstract

Chemoprevention is effective in inhibiting the onset of cancer in experimental animal models, but the transferability of similar results to humans is questionable. Therefore, reliable intermediate molecular biomarkers are needed to evaluate the efficacy of chemopreventive agents before the onset of cancer. The use of genomic biomarkers is limited by their poor predictive value. Although post-genomic biomarkers (i.e., gene-expression analyses) are useful for evaluating the safety, efficacy, and mechanistic basis of chemopreventive agents, the biomarkers are often poorly related to the phenotype, due to posttranscriptional regulation. Proteome analyses can evaluate preclinical phenotype alterations, but only at low protein counts. MicroRNA alterations, which are essential for the development of cancer, may be modulated by chemopreventive agents. Furthermore, microRNA delivery may be used to counteract carcinogenesis. Exposure to cigarette smoke induces microRNA let-7 downregulation and cell proliferation that can be converted to cell growth arrest and apoptosis upon let-7a transfection. Therefore, microRNAs are reliable biomarkers for evaluating chemoprevention efficacy and may be used to counteract carcinogenesis.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/473720
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 27
social impact