Some effects of diffusion polarization and chemical reactions on the steady-state zero-current conductance of lipid bilayers mediated by neutral carriers of ions have been studied theoretically and experimentally. Assuming that ion permeation across the interfaces occurs via a heterogeneous reaction between ions in the solution and carriers in the membrane, the relationship between the conductance and the aqueous concentration of carriers is shown to be linear only in a limited range of sufficiently low concentrations. At higher carrier concentrations, which for the most strongly bound cations are within the range of the experimentally accessible values, the conductance is expected to become limited by diffusion of the carried ion in the unstirred layers and therefore reach an upper limiting value independent of the membrane properties. This expectation has been successfully verified for glyceryl-monooleate membranes in the presence of the ions K+, Rb+ and NH+4 and carriers such as valinomycin and trinactin. The experimental results support, at least for the present system, the generally accepted view that complexation between ions and the macrocyclic antibiotics occurs at the membrane surface; it is shown, in fact, that for a different mechanism, such as that by which the complexes would form in the aqueous solutions and cross the interfaces as lipid-soluble ions, the same type of saturation would be expected to be observable only for unrealistically high values of the rate constants of the ion-carrier association. A previously proposed criterion to distinguish between these two mechanisms, based on the dependence of the conductance on the ion concentration, is discussed from the viewpoint of this more comprehensive model.

Effects of unstirred layers on the steady-state zero-current conductance of bilayer membranes mediated by neutral carriers of ions.

GLIOZZI, ALESSANDRA;ROLANDI, RANIERI
1975-01-01

Abstract

Some effects of diffusion polarization and chemical reactions on the steady-state zero-current conductance of lipid bilayers mediated by neutral carriers of ions have been studied theoretically and experimentally. Assuming that ion permeation across the interfaces occurs via a heterogeneous reaction between ions in the solution and carriers in the membrane, the relationship between the conductance and the aqueous concentration of carriers is shown to be linear only in a limited range of sufficiently low concentrations. At higher carrier concentrations, which for the most strongly bound cations are within the range of the experimentally accessible values, the conductance is expected to become limited by diffusion of the carried ion in the unstirred layers and therefore reach an upper limiting value independent of the membrane properties. This expectation has been successfully verified for glyceryl-monooleate membranes in the presence of the ions K+, Rb+ and NH+4 and carriers such as valinomycin and trinactin. The experimental results support, at least for the present system, the generally accepted view that complexation between ions and the macrocyclic antibiotics occurs at the membrane surface; it is shown, in fact, that for a different mechanism, such as that by which the complexes would form in the aqueous solutions and cross the interfaces as lipid-soluble ions, the same type of saturation would be expected to be observable only for unrealistically high values of the rate constants of the ion-carrier association. A previously proposed criterion to distinguish between these two mechanisms, based on the dependence of the conductance on the ion concentration, is discussed from the viewpoint of this more comprehensive model.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/382481
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 17
  • ???jsp.display-item.citation.isi??? ND
social impact