The transition and separation processes of the boundary layer developing on a flat plate under a prescribed adverse pressure gradient typical ofUltra-High-Lift low-pressure turbine profiles have been investigated, with and without the application of a synthetic jet (zero net mass flow rate jet). A mechanical piston has been adopted to produce an intermittent flow with zero net mass flow rate. The capability of the device to suppress or reduce the large laminar separation bubble occurring under steady inflow condition at low Reynolds numbers has been experimentally investigated by means of hot-wire measurements.Wall static pressure measurements complement the hot-wire time-resolved velocity results. The paper reports the investigations performed for both steady and controlled conditions. The active device is able to control the laminar separation bubble induced at low Reynolds number conditions by the strong adverse pressure gradient. An overall view of the timedependent evolution of the controlled boundary layer is provided by the phaselocked ensemble averaging technique, triggered at the synthetic jet frequency. The separated flow transition process, which is detected for the uncontrolled condition, is modified by the synthetic jet in different ways during the blowing and suction phases. Overall, the phase-locked velocity distributions show a reduced separated flow region for the whole jet cycle as compared to the uncontrolled condition. The phase-locked distributions of the random unsteadiness allow the identification of vortical structures growing along the shear layer mainly during the blowing phase.

Application of a Synthetic Jet to Control Boundary Layer Separation under Ultra-High-Lift Turbine Pressure Distribution

LENGANI, DAVIDE;SIMONI, DANIELE;UBALDI, MARINA;ZUNINO, PIETRO;
2011-01-01

Abstract

The transition and separation processes of the boundary layer developing on a flat plate under a prescribed adverse pressure gradient typical ofUltra-High-Lift low-pressure turbine profiles have been investigated, with and without the application of a synthetic jet (zero net mass flow rate jet). A mechanical piston has been adopted to produce an intermittent flow with zero net mass flow rate. The capability of the device to suppress or reduce the large laminar separation bubble occurring under steady inflow condition at low Reynolds numbers has been experimentally investigated by means of hot-wire measurements.Wall static pressure measurements complement the hot-wire time-resolved velocity results. The paper reports the investigations performed for both steady and controlled conditions. The active device is able to control the laminar separation bubble induced at low Reynolds number conditions by the strong adverse pressure gradient. An overall view of the timedependent evolution of the controlled boundary layer is provided by the phaselocked ensemble averaging technique, triggered at the synthetic jet frequency. The separated flow transition process, which is detected for the uncontrolled condition, is modified by the synthetic jet in different ways during the blowing and suction phases. Overall, the phase-locked velocity distributions show a reduced separated flow region for the whole jet cycle as compared to the uncontrolled condition. The phase-locked distributions of the random unsteadiness allow the identification of vortical structures growing along the shear layer mainly during the blowing phase.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/302400
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 14
social impact