Electroencephalography (EEG) is a non-invasive imaging modality in which a primary current density generated by the neural activity in the brain is to be reconstructed based on external electric potential measurements. This paper focuses on the finite element method (FEM) from both forward and inverse aspects. The goal is to establish a clear correspondence between the lowest order Raviart-Thomas basis functions and dipole sources as well as to show that the adopted FEM approach is computationally effective. Each basis function is associated with a dipole moment and a location. Four candidate locations are tested. Numerical experiments cover two different spherical multilayer head models, four mesh resolutions and two different forward simulation approaches, one based on FEM and one based on the boundary element method (BEM) with standard dipoles as sources. The forward simulation accuracy is examined through column- and matrix-wise relative errors as well as through performance in inverse dipole localization. A closed-form approximation of dipole potential was used as the reference forward simulation. The results suggest that the present approach is comparable or superior to BEM and to the recent FEM based subtraction approach regarding both accuracy, computation time and accessibility of implementation.
Forward simulation and inverse dipole localization with the lowest Raviart-Thomas elements for electroencephalography
SORRENTINO, ALBERTO;CAMPI, CRISTINA;PIANA, MICHELE
2011-01-01
Abstract
Electroencephalography (EEG) is a non-invasive imaging modality in which a primary current density generated by the neural activity in the brain is to be reconstructed based on external electric potential measurements. This paper focuses on the finite element method (FEM) from both forward and inverse aspects. The goal is to establish a clear correspondence between the lowest order Raviart-Thomas basis functions and dipole sources as well as to show that the adopted FEM approach is computationally effective. Each basis function is associated with a dipole moment and a location. Four candidate locations are tested. Numerical experiments cover two different spherical multilayer head models, four mesh resolutions and two different forward simulation approaches, one based on FEM and one based on the boundary element method (BEM) with standard dipoles as sources. The forward simulation accuracy is examined through column- and matrix-wise relative errors as well as through performance in inverse dipole localization. A closed-form approximation of dipole potential was used as the reference forward simulation. The results suggest that the present approach is comparable or superior to BEM and to the recent FEM based subtraction approach regarding both accuracy, computation time and accessibility of implementation.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.