Ascending and descending Morse complexes, defined by the critical points and integral lines of a scalar field f defined on a manifold domain D, induce a subdivision of D into regions of uniform gradient flow, and thus provide a compact description of the morphology of f on D. We propose a dimension-independent representation for the ascending and descending Morse complexes, and we describe a data structure which assumes a discrete representation of the field as a simplicial mesh, that we call the incidence-based data structure. We present algorithms for building such data structure for 2D and 3D scalar fields, which make use of a watershed approach to compute the cells of the Morse decompositions.

Building Morphological Representations for 2D and 3D Scalar Fields

DE FLORIANI, LEILA;
2010-01-01

Abstract

Ascending and descending Morse complexes, defined by the critical points and integral lines of a scalar field f defined on a manifold domain D, induce a subdivision of D into regions of uniform gradient flow, and thus provide a compact description of the morphology of f on D. We propose a dimension-independent representation for the ascending and descending Morse complexes, and we describe a data structure which assumes a discrete representation of the field as a simplicial mesh, that we call the incidence-based data structure. We present algorithms for building such data structure for 2D and 3D scalar fields, which make use of a watershed approach to compute the cells of the Morse decompositions.
2010
9783905673807
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/257373
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact