The beaches are sites where the human influence may be strong and the beach ecosystems have often shown a high sensibility to environmental alterations. These zones may be affected by a large series of anthropogenicderived pressures, such as unbalanced inorganic nutrient input, that may cause anomalous development of primary production, altering the structure of the trophic webs. Furthermore, the utilisation of cosmetic sunscreen products is reaching unexpected levels, thus assuming a potentially important as well as unknown role in the contamination of marine environments. The present study was planned to test the response of the beach ecosystem to increases in inorganic nutrients (nitrate and phosphate) and to the input of a widely used cosmetic sunscreenproduct. A short-term laboratory experiment was carried out on microsystems consisting of sediments and seawater from the swash zone of a Ligurian city beach (Sturla). The processes related to organic matter (OM) recycling and some microbial food web components (bacteria and micro-autotrophic organisms) were analysed. The multivariate statistical analysis of the results showed that the increase in inorganic nutrients and sunscreen caused only a transient alteration in the OM recycling processes in the seawater. The sedimentary processes, instead, were different in the different systems, although starting from the same condition. In the sediment, surprisingly, an increase in inorganic nutrients did not lead to an increase in the primary biomass nor to significantly higher bacterial abundance, while the sunscreen caused increased OM recycling, especially devoted to protein and lipid mobilisation, supporting a growing bacterial and autotrophic community by reducing the bottom-up pressure. Additional toxicity tests performed on protozoa highlighted that, while the inorganic nutrients seemed to show no effects, sunscreen decreased the protozoan viability, thus likely favouring microautotrophic and bacterial increases by reducing the top-down pressure.

Organic matter recycling in a beach environment influenced by sunscreen products and increased inorganic nutrient supply (Sturla, Ligurian Sea, NW Mediterranean)

MISIC, CRISTINA;COVAZZI HARRIAGUE A;
2011-01-01

Abstract

The beaches are sites where the human influence may be strong and the beach ecosystems have often shown a high sensibility to environmental alterations. These zones may be affected by a large series of anthropogenicderived pressures, such as unbalanced inorganic nutrient input, that may cause anomalous development of primary production, altering the structure of the trophic webs. Furthermore, the utilisation of cosmetic sunscreen products is reaching unexpected levels, thus assuming a potentially important as well as unknown role in the contamination of marine environments. The present study was planned to test the response of the beach ecosystem to increases in inorganic nutrients (nitrate and phosphate) and to the input of a widely used cosmetic sunscreenproduct. A short-term laboratory experiment was carried out on microsystems consisting of sediments and seawater from the swash zone of a Ligurian city beach (Sturla). The processes related to organic matter (OM) recycling and some microbial food web components (bacteria and micro-autotrophic organisms) were analysed. The multivariate statistical analysis of the results showed that the increase in inorganic nutrients and sunscreen caused only a transient alteration in the OM recycling processes in the seawater. The sedimentary processes, instead, were different in the different systems, although starting from the same condition. In the sediment, surprisingly, an increase in inorganic nutrients did not lead to an increase in the primary biomass nor to significantly higher bacterial abundance, while the sunscreen caused increased OM recycling, especially devoted to protein and lipid mobilisation, supporting a growing bacterial and autotrophic community by reducing the bottom-up pressure. Additional toxicity tests performed on protozoa highlighted that, while the inorganic nutrients seemed to show no effects, sunscreen decreased the protozoan viability, thus likely favouring microautotrophic and bacterial increases by reducing the top-down pressure.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/256239
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 13
social impact