High electron mobility is measured down to low temperature in epitaxial ZnO thin films deposited on (110) oriented strontium titanate substrates. Electron mobility is evaluated by both magnetoresistance and resistivity-Hall effect data. Values up to 400 cm2/Vs are found below 50 K in epitaxial thin films grown by a two-step method: first a 100-nm-thick ZnO relaxing layer is deposited on the SrTiO3 (110) substrate at relatively low temperature (550–600 °C) and then the deposition temperature is raised up to 800 °C for the growth of a second ZnO layer. Reflection high energy electron diffraction analysis during the deposition, ex situ x-ray diffraction and AFM morphology studies performed separately on each layer reveal that the first layer grows in a quasi-two-dimensional mode while the increased temperature in the second step improves the crystalline quality of the film. The integration of ZnO transparent semiconductor with high-k dielectric perovskite substrates may lead to a wide variety of new electronic/optoelectronic devices.

High mobility in ZnO thin films deposited on perovskite substrates with a low temperature nucleation layer

MARRE', DANIELE;SIRI, ANTONIO
2005-01-01

Abstract

High electron mobility is measured down to low temperature in epitaxial ZnO thin films deposited on (110) oriented strontium titanate substrates. Electron mobility is evaluated by both magnetoresistance and resistivity-Hall effect data. Values up to 400 cm2/Vs are found below 50 K in epitaxial thin films grown by a two-step method: first a 100-nm-thick ZnO relaxing layer is deposited on the SrTiO3 (110) substrate at relatively low temperature (550–600 °C) and then the deposition temperature is raised up to 800 °C for the growth of a second ZnO layer. Reflection high energy electron diffraction analysis during the deposition, ex situ x-ray diffraction and AFM morphology studies performed separately on each layer reveal that the first layer grows in a quasi-two-dimensional mode while the increased temperature in the second step improves the crystalline quality of the film. The integration of ZnO transparent semiconductor with high-k dielectric perovskite substrates may lead to a wide variety of new electronic/optoelectronic devices.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/250650
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 31
social impact