We propose a two-layer neuromorphic architecture by which motion field pattern, generated during locomotion, are processed by template detectors specialized for gaze-directed self-motion (expansion and rotation). The templates provide a gaze-centered computation for analyzing motion field in terms of how it is related to the fixation point (i.e., the fovea). The analysis is performed by relating the vectorial components of the act of motion to variations (i.e., asymmetries) of the local structure of the motion field. Notwithstanding their limited extension in space, such centric-minded templates extract, as a whole, global information from the input flow field, being sensitive to different local instances of the same global property of the vector field with respect to the fixation point; a quantitative analysis, in terms of vectorial operators, evidences this property as tuning curves for heading direction. Model performances, evaluated in several situations characterized by conditions of absence and presence of pursuit eye movements, validate the approach. We observe that the gaze-centered model provides an explicit testable hypothesis that can guide further explorations of visual motion processing in extrastriate cortical areas.

Centric-minded Templates for Self-motion Perception

SABATINI, SILVIO PAOLO;SOLARI, FABIO;BISIO, GIACOMO
2003-01-01

Abstract

We propose a two-layer neuromorphic architecture by which motion field pattern, generated during locomotion, are processed by template detectors specialized for gaze-directed self-motion (expansion and rotation). The templates provide a gaze-centered computation for analyzing motion field in terms of how it is related to the fixation point (i.e., the fovea). The analysis is performed by relating the vectorial components of the act of motion to variations (i.e., asymmetries) of the local structure of the motion field. Notwithstanding their limited extension in space, such centric-minded templates extract, as a whole, global information from the input flow field, being sensitive to different local instances of the same global property of the vector field with respect to the fixation point; a quantitative analysis, in terms of vectorial operators, evidences this property as tuning curves for heading direction. Model performances, evaluated in several situations characterized by conditions of absence and presence of pursuit eye movements, validate the approach. We observe that the gaze-centered model provides an explicit testable hypothesis that can guide further explorations of visual motion processing in extrastriate cortical areas.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/250288
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact