Background: In Paramecium primaurelia, an exconjugant cell can produce two Lines with different mating capacities. Mating type II cells can form a higher food vacuole number and digest the nutrient taken up in a shorter time; thus, mating type II cells grow at a faster rate than do mating type I cells. The present study was done to determine whether cells that ingest more nutrients also have a larger amount of storage lipids. Methods: Quantitative and qualitative determinations of neutral lipids were obtained by means of cytofluorometry and fluorescence confocal laser scanning microscopy (CLSM), respectively, by using nile red on cells in different physiologic states. Results: Lipid droplet number and neutral lipid content were higher in mating type II cells than in mating type I cells in the early logarithmic growth phase (i.e., immature well-fed cells). These values were reversed during the middle and the late logarithmic phases and became equal in the stationary phase (i.e., mature starved cells). In well-fed cells maintained with food excess, differences in neutral lipid content between the two mating types also were present in mature cells. Conclusions: Although differences between mating type I and mating type II lines were not correlated to cell size, a relation was found between lipid content and food ingestion capacity. A depletion of bacteria in the culture medium could be responsible for the lack of differences in mature starved cells. CLSM allowed us to gather volume information about the lipid droplet distribution within the cell.

Cytofluorometry and fluorescence confocal laser scanning microscopy (CLSM) in the study of neutral lipid dynamics in Paramecium primaurelia mating types during cell line development

RAMOINO, PAOLA;DIASPRO, ALBERTO GIOVANNI;FATO, MARCO MASSIMO;BELTRAME, FRANCESCO
1999-01-01

Abstract

Background: In Paramecium primaurelia, an exconjugant cell can produce two Lines with different mating capacities. Mating type II cells can form a higher food vacuole number and digest the nutrient taken up in a shorter time; thus, mating type II cells grow at a faster rate than do mating type I cells. The present study was done to determine whether cells that ingest more nutrients also have a larger amount of storage lipids. Methods: Quantitative and qualitative determinations of neutral lipids were obtained by means of cytofluorometry and fluorescence confocal laser scanning microscopy (CLSM), respectively, by using nile red on cells in different physiologic states. Results: Lipid droplet number and neutral lipid content were higher in mating type II cells than in mating type I cells in the early logarithmic growth phase (i.e., immature well-fed cells). These values were reversed during the middle and the late logarithmic phases and became equal in the stationary phase (i.e., mature starved cells). In well-fed cells maintained with food excess, differences in neutral lipid content between the two mating types also were present in mature cells. Conclusions: Although differences between mating type I and mating type II lines were not correlated to cell size, a relation was found between lipid content and food ingestion capacity. A depletion of bacteria in the culture medium could be responsible for the lack of differences in mature starved cells. CLSM allowed us to gather volume information about the lipid droplet distribution within the cell.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/249125
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact