In this paper, we propose a digital architecture for support vector machine (SVM) learning and discuss its implementation on a field programmable gate array (FPGA). We analyze briefly the quantization effects on the performance of the SVM in classification problems to show its robustness, in the feedforward phase, respect to fixed-point math implementations; then, we address the problem of SVM learning. The architecture described here makes use of a new algorithm for SVM learning which is less sensitive to quantization errors respect to the solution appeared so far in the literature. The algorithm is composed of two parts: the first one exploits a recurrent network for finding the parameters of the SVM; the second one uses a bisection process for computing the threshold. The architecture implementing the algorithm is described in detail and mapped on a real current-generation FPGA (Xilinx Virtex II). Its effectiveness is then tested on a channel equalization problem, where real-time performances are of paramount importance

A digital architecture for support vector machines: theory, algorithm and FPGA implementation

ANGUITA, DAVIDE;RIDELLA, SANDRO
2003-01-01

Abstract

In this paper, we propose a digital architecture for support vector machine (SVM) learning and discuss its implementation on a field programmable gate array (FPGA). We analyze briefly the quantization effects on the performance of the SVM in classification problems to show its robustness, in the feedforward phase, respect to fixed-point math implementations; then, we address the problem of SVM learning. The architecture described here makes use of a new algorithm for SVM learning which is less sensitive to quantization errors respect to the solution appeared so far in the literature. The algorithm is composed of two parts: the first one exploits a recurrent network for finding the parameters of the SVM; the second one uses a bisection process for computing the threshold. The architecture implementing the algorithm is described in detail and mapped on a real current-generation FPGA (Xilinx Virtex II). Its effectiveness is then tested on a channel equalization problem, where real-time performances are of paramount importance
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/247511
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 189
  • ???jsp.display-item.citation.isi??? 156
social impact