Many Earth system science and environmental applications require knowledge of mapped evaporation. Satellite remote sensing can indirectly provide these measurements with a spatial coverage that is logistically and economically impossible to obtain through ground-based observation networks. Here a model for surface energy fluxes estimation based on the assimilation of land surface temperature from satellite is presented. The data assimilation scheme provides a useful framework that allows us to combine measurements and models to produce an optimal and dynamically consistent estimate of the evolving state of the system. The assimilation scheme can take advantage of the synergy of multisensor-multiplatform observations in order to obtain estimations of surface fluxes, flux partitioning, and surface characteristics. The model is based on the surface energy balance and bulk transfer formulation. A simplified soil wetness model, which is a filter of antecedent precipitation, is introduced in order to develop a more robust estimation scheme. This approach is implemented and tested over the Southern Great Plain field experiment domain. Comparisons with observed surface energy fluxes and soil moisture maps have shown that this assimilation system can estimate, when compared with the ground truth observations, the surface energy balance and its partitioning among turbulent heat fluxes. The introduction of the simplified soil wetness model forced by precipitation data improved evaporative fraction estimation. Further research is still required to analyze the reliability of retrieved fluxes in periods where radiation is the limiting factor for latent heat flux

Estimation of Large-Scale Evaporation Fields Based on Assimilation of Remotely Sensed Land Temperature

BONI, GIORGIO;
2008-01-01

Abstract

Many Earth system science and environmental applications require knowledge of mapped evaporation. Satellite remote sensing can indirectly provide these measurements with a spatial coverage that is logistically and economically impossible to obtain through ground-based observation networks. Here a model for surface energy fluxes estimation based on the assimilation of land surface temperature from satellite is presented. The data assimilation scheme provides a useful framework that allows us to combine measurements and models to produce an optimal and dynamically consistent estimate of the evolving state of the system. The assimilation scheme can take advantage of the synergy of multisensor-multiplatform observations in order to obtain estimations of surface fluxes, flux partitioning, and surface characteristics. The model is based on the surface energy balance and bulk transfer formulation. A simplified soil wetness model, which is a filter of antecedent precipitation, is introduced in order to develop a more robust estimation scheme. This approach is implemented and tested over the Southern Great Plain field experiment domain. Comparisons with observed surface energy fluxes and soil moisture maps have shown that this assimilation system can estimate, when compared with the ground truth observations, the surface energy balance and its partitioning among turbulent heat fluxes. The introduction of the simplified soil wetness model forced by precipitation data improved evaporative fraction estimation. Further research is still required to analyze the reliability of retrieved fluxes in periods where radiation is the limiting factor for latent heat flux
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/227450
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 46
social impact