The Fe-Ni system is a key subsystem for several alloys with important applications. It has been thermodynamically assessed according to the CALPHAD methodology and using 0 K enthalpies of formation of the ordered phases resulting from ab-initio atomistic calculations. This allowed us to model both stable and metastable fcc-based ordered phases (L12 Fe3Ni, L10 FeNi and L12 FeNi3) in the framework of the compound energy formalism (CEF) by using a 4-sublattice model. The combined ab-initio and CALPHAD approach enabled us to predict low-temperature stable equilibria which are experimentally not accessible due to an extremely sluggish kinetics. A similar 4-sublattice model has also been used for the bcc-based ordered phases (D03 Fe3Ni, B2 and B32 FeNi, D03 FeNi3), which are metastable in the FeeNi system, but need to be reliably modelled in order to enable extrapolations to higher order systems such as AleFeeNi. Magnetic ordering, which is particularly important in this system, has also been thermodynamically described and the influence of magnetism on phase equilibria evidenced.

The Fe–Ni system: Thermodynamic modelling assisted by atomistic calculations

CACCIAMANI, GABRIELE;
2010

Abstract

The Fe-Ni system is a key subsystem for several alloys with important applications. It has been thermodynamically assessed according to the CALPHAD methodology and using 0 K enthalpies of formation of the ordered phases resulting from ab-initio atomistic calculations. This allowed us to model both stable and metastable fcc-based ordered phases (L12 Fe3Ni, L10 FeNi and L12 FeNi3) in the framework of the compound energy formalism (CEF) by using a 4-sublattice model. The combined ab-initio and CALPHAD approach enabled us to predict low-temperature stable equilibria which are experimentally not accessible due to an extremely sluggish kinetics. A similar 4-sublattice model has also been used for the bcc-based ordered phases (D03 Fe3Ni, B2 and B32 FeNi, D03 FeNi3), which are metastable in the FeeNi system, but need to be reliably modelled in order to enable extrapolations to higher order systems such as AleFeeNi. Magnetic ordering, which is particularly important in this system, has also been thermodynamically described and the influence of magnetism on phase equilibria evidenced.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11567/222920
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 105
  • ???jsp.display-item.citation.isi??? 106
social impact